BM TECH | building solutions Ing. Dietmar Gindl, AE Feichsenstrasse 5 3251 Purgstall +43 664 4000 962 office@bmtech.at

ENERGIEAUSWEIS

Ist-Zustand Gaststätte GASSLHOF

Unterer Markt 6 3261 Steinakirchen am Forst

Energieausweis für Nicht-Wohngebäude

OIB OSTERREICHISCHES

OIB Richtlinie 6 Ausgabe Oktober 2011

BEZEICHNUNG

GASSLHOF

Gebäudeteil Nutzungsprofil

Gaststätte

Straße

Unterer Markt 6

PLZ/Ort

3261 Steinakirchen am Forst

Grundstücksnr.

.52

Baujahr

1900

Letzte Veränderung

Katastralgemeinde

Steinakirchen am Forst

KG-Nr.

22138

Seehöhe

317 m

SPEZIFISCHER HEIZWÄRMEBEDARF (STANDORTKLIMA)

A++

A+

A

В

C

D -

F

G

HWB*sk

D

HWB*: Der Heizwärmebedarf beschreibt jene Wärmemenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden muss. Die Anforderung richtet sich an den wohngebäudeäquivalenten Heizwärmebedarf.

KB: Der Kühlbedarf beschreibt jene Wärmemenge, welche aus den Räumen rechnensch abgeführt werden muss. Die Anforderung richtet sich an den außenlufünduzierten Kühlbedarf.

WWWB: Der Warmwasserwärmebedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht ca. einem Liter Wasser je Quadratmeter Brutto-Grundfläche, welcher um ca. 30°C (also beispielsweise von 8°C auf 38°C) erwärmt wird.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Nutzenergiebedarf die Verluste der Haustechnik im Gebäude berücksichtigt. Dazu zählen beispielsweise die Verluste des Heizkessels, der Energiebedarf von Umwälzpumpen etc.

BSB: Der Betriebsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht der Hälfte der mittleren Inneren Lasten. EEB: Beim Endenergiebedarf wird zusätzlich zum Heizenergiebedarf der Betriebsstrombedarf berücksichtigt. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss.

PEB: Der Primärenerglebedarf schließt die gesamte Energie für den Bedarf im Gebäude einschließlich aller Vorketten mit ein. Dieser weist einen erneuerbaren und einen nicht erneuerbaren Anteil auf. Der Ermittlungszeitraum für die Konversionsfaktoren ist 2004 - 2008.

CO₂: Gesamte dem Endenergiebedarf zuzurechnenden Kohlendloxidemissionen, einschließlich jener für Transport und Erzeugung sowie aller Verluste. Zu deren Berechnung wurden übliche Allokationsregeln unterstellt.

f_{GEE} : Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

Alle Werte gelten unter der Annahme eines normierten Benutzerverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden nach Maßgabe der NÖ GEEV 2008.

Energieausweis für Nicht-Wohngebäude

OIB Richtlinie 6 Ausgabe Oktober 2011

GEBÄUDEKENNDATEN					
Brutto-Grundfläche	1.495 m²	Klimaregion	NF	mittlerer U-Wert	0,79 W/m²K
Bezugs-Grundfläche	1.196 m²	Heiztage	265 d	Bauweise	schwer
Brutto-Volumen	6.563 m³	Heizgradtage	3502 Kd	Art der Lüftung	RLT ohne WRG
Gebäude-Hüllfläche	2.671 m²	Norm-Außentemperatur	-15,8 °C	Sommertauglichkeit	
Ochado Hamilanio					

Soll-Innentemperatur

LEK_T-Wert

20 °C

Kompaktheit (AVV) 0,41 1/m charakteristische Länge 2,46 m

WÄRME- UND ENERGIEBEDARF

	Referenzklima	Stando	rtklima	
	spezifisch	zonenbezogen [kWh/a]	spezifisch [kWh/m²a]	
HWB*	26,7 kWh/m³a	184.051	28,0 kWh/m³a	
HWB		211.865	141,7	
MWB		9.552	6,4	
KB*	0,0 kWh/m³a	75	0,0 kWh/m³a	
KB		22.242	14,9	
BefEB				
HTEBRH		37.783	25,3	
HTEBww		29.500	19,7	
HTEB		122.664	82,0	
KTEB				
HEB		344.082	230,1	
KEB				
BelEB		40.528	27,1	
BSB		73.691	49,3	
EEB		458.300	306,5	
PEB		847.896	567,0	
PEBn.em.		759.494	507,9	
PEBem.		88.402	59,1	
CO ₂				
f _{GEE}		1	,53	

ERSTELLT			
GWR-Zahl		ErstellerIn	BM TECH building solutions Feichsenstrasse 5
Ausstellungsdatum	04.12.2014		3251 Purgstall
Gültigkeitsdatum	03.12.2024	Unterschrift	

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingabeparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und Lage hinsichtlich Ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ GASSLHOF

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Steinakirchen am Forst

HWB 142 fgee 1.53

Gebäudedaten - Ist-Zustand

Brutto-Grundfläche BGF 1.495 m² Konditioniertes Brutto-Volumen 6.563 m³ Gebäudehüllfläche AB 2.671 m²

charakteristische Länge Ic. 2.46 Kompaktheit AB / VB 0,41

Ermittlung der Eingabedaten

Geometrische Daten: Einreichplan Bauphysikalische Daten: Baubeschreibung. Haustechnik Daten: Baubeschreibung,

Ergebnisse am tatsächlichen Standort: Steinakirchen am Forst

Transmissionswärmeverluste Q _T		209.630	MAIN
Lüftungswärmeverluste Q _V			
Solare Wärmegewinne passiv η x Q _s		116.305	kWh/a
		27.909	kWh/a
Innere Wärmegewinne passiv η x Q i	schwere Bauweise	84.361	kWh/a
Heizwärmebedarf Q _h		211.865	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q T		
	197.071	kWh/a
Lüftungswärmeverluste Q _V	109.337	kWh/a
Solare Wärmegewinne passiv η x Q _s	26.025	kWh/a
Innere Wärmegewinne passiv η x Q;	78.823	kWh/a
Heizwärmebedarf Q _h	201.561	kWh/a

Haustechniksystem

Raumheizung: Flüssiger oder gasförmiger Brennstoff (Heizöl Extra leicht)

Warmwasser: Kombiniert mit Raumheizung

Lufterneuerung; energetisch wirksamer Luftwechsel: 1,00; Blower-Door: 2,50; keine Lüftung:

Wärmerückgewinnung; kein Erdwärmetauscher

Berechnungsgrundlagen

Der Energieauswels wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:

Verificate rotinien and rotininen.

B 8110-1 /ON B 8110-2 /ON B 8110-3 /ON B 8110-5 /ON B 8110-6 /ON H 5055 /ON H 5056 /ON H 5057 /ON H 5058 /ON H 5059 /ON EN ISO 13790 /ON EN ISO 13370 /ON EN ISO 6946 /ON EN ISO 10077-1 /ON EN 12831 /OIB Richtlinie 6

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Empfehlungen zur Verbesserung **GASSLHOF**

Allgemeines

Im Zuge der Energieausweiserstellung für Bestandsgebäude sind Verbesserungsvorschläge zu erstellen. Diese richten sich auf thermische Verbesserungen und zeigen Energieeinsparmöglichhkeiten auf. Zur optimalen Abstimmung von Sanierungsmaßnahmen ist die Erstellung eines Sanierungskonzeptes notwendig. In einem derartigen Konzept werden Maßnahmen auf Relevanz und Wirtschaftlichkeit überprüft.

Gebäudehülle

- Dämmung Außen- / Innenwand / erdber. Wand

AUSSENWÄNDE

Die Außenwände des gesamten Gebäudes entsprechen nicht den aktuellen Anforderungen in der NÖ BTV. Die größere Masse der Wände im EG sorgen zumindest für eine gute thermische Speichermöglichkeit. Die Aufheizung und Abkühlung erfolgt somit jedoch träge. Die Etablierung einer Wärmeschutzfassade ist durch die gegliederte Fassade schwierig und erscheint auf Grund der Nutzung auch nicht als vordringlich. Sollte jedoch eine solche angedacht werden ist nach Möglichkeit auf eine diffusionsoffene Ausführung zu achten. Aus nachhaltiger Sicht ist ein U-Wert von max 0,25W/m²K zu erreichen. Dies kann zb. mittels 14cm Dämmung (lambda 0,04W/mK) erreicht werden. Mögliche Einbauten für Sonnenschutzvorrichtungen von Fenster und Türen sind in der Dämmstärkenwahl zu berücksichtigen. Achtung im Bereich zum öffentlichen Gut!

- Fenstertausch

FENSTER

Die im Bestand befindlichen Fenster entsprechen zwar nicht mehr den aktuellen Erfordernissen, sind jedoch bei der Nutzung als Gasthof bzw. Veranstaltungsstätte ausreichend.

GROSSFLÄCHENVERGLASUNG

Die Portalkonstruktion weist den größten Wärmeverlust bei den transparenten Außenflächen auf. Sie ist in jedem Fall auf Ihre Funktionstüchtigkeit zu überprüfen. Die ungedämmten Rahmen stellen ein hohes Kondensationsrisiko dar, da an Ihrer Oberfläche sehr niedrige Temperaturen herrschen, die wiederum bei hoher Luftfeuchtigkeit zur Kondensation führen.

Am Markt sind derzeit sehr gute Sanierungskonzepte für derartige Konstruktionen erhältlich. Eine Wirtschaftlichkeitsprüfung ist jedoch anzuraten.

SONNENSCHUTZ

Derzeit sind keine Sonnenschutzmaßnahmen im Einsatz. Durch die Verbauung im Süden und Westen ist auch kein hoher Bedarf gegeben. Die größten Glasflächen befinden sich richtung Nordosten und stellen somit kein Problem dar.

- Dämmung erdberührter Boden

EG FUSSBODEN

Das größte Wärmeverlustpotential bietet derzeit der EG Fußboden, speziell im Altbau. Eine Verbesserung der Situation wäre durch Auflage einer Dämmschicht mit darüberliegender neuer Fußbodenoberfläche möglich. Dies würde die Wärmeabstrahlung Richtung kaltem Fußboden vermindern und zusätzlich zur Innenraumbehaglichkeit beitragen. Die Nutzung als Gastraum, bzw. vieler Allgemeinflächen wie Verkehrswege, Lager und Küche, stellen jedoch keine hohen Anforderungen an die Behaglichkeit dar. Somit ist die Verbesserung dieser Bereiche nachrangig bzw. unwirtschaftlich.

Haustechnik

- Dämmung Wärmeverteilleitungen

LEITUNGSDÄMMUNG

Die Wärmeversorgungsleitungen sind gedämmt ausgeführt. Lediglich die Armaturen sind ungedämmt. Da diese eine entsprechende Größe auweisen besteht hier ein Verbesserungspotential.

Empfehlungen zur Verbesserung GASSLHOF

- Heizungstausch (Nennwärmeleistung optimieren)

HEIZUNG

Bei Durchführung von thermischen Sanierungsmaßnahmen ist die Dimensionierung der Heizung zu prüfen. Je nach vorliegender Heizlast ist der bestehende Kessel auf seine Tauglichkeit zu untersuchen. Durch Modulation und gleitendem Betrieb können hier Einstellungen vorgenommen werden.

Ein möglicher Tausch der Heizung auf biogene Brennstoffe ist zu prüfen.

- Einbau von leistungsoptimierten und gesteuerten Heizungspumpen PUMPEN

Zum effizienteren Betrieb der Beheizung ist die Integration von Niedrigenergiepumpen anzudenken. Aktuelle Pumpen besitzen eine Absenkungserkennung und regulieren somit auch den eigenen Energieverbrauch. Hand in Hand dazu ist eine entsprechende Heizungsregelung obligatorisch. Je nach Nutzung des Gebäudes ist eine Zonen- od. Einzelraumregelung von Vorteil. Als Faustformel für Steuerungen gilt: Einfach aber Effizient! Komplizierte Steuerungen arbeiten meist nicht effizient und verführen zu falschem Nutzerverhalten.

- Einregulierung / hydraulischer Abgleich

HYDRAUL

In jedem Fall ist die Durchführung einer Einregulierung der Heizung anzudenken. Dabei ist ein hydraulischer Abgleich der Anlage durchzuführen. Durch die optimierte Einstellung der Anlage können (aus Expertenberichten) meist bis zu 20% und mehr an Energie eingespart werden.

- Einbau einer Wohnraumlüftung mit Wärmerückgewinnung

LÜFTUNG

Je nach weiterer Nutzung des Gebäudes bzw. der Gebäudeteile, ist die Etablierung von Wärmetauschern für die Lüftungsanlage anzudenken. Hierbei ist von einer entsprechend fachkundigen Firma ein Konzept zu erstellen. Die Abwärme bei Veranstaltungen mit großen Menschenmassen sowie aus der Küche kann ggf. entsprechend genutzt und dem Gebäude rückgeführt werden.

Eine Leitungsführung im Dachboden ist ggf. möglich. Durch die Anlage können unnötige Lüftungswärmeverluste vermieden werden. Durch Einsatz von hocheffizienten Wärmetauschern bleibt bei niedrigen Außentemperaturen ein Großteil der Raumwärme bei besserer Luftqualität erhalten.

- Errichtung einer thermischen Solaranlage

SOLAR

Zur Warmwasserbereitung ist die Etablierung einer Solaranlage empfehlenswert. Die Südausrichtung der Kollektoren kann auch auf Nebengebäuden erzielt werden. Das gesamte Heizsystem ist bei Kombination mit einer Solaranlage abzustimmen.

- Optimierung der Beleuchtung

Die im Bestand befindliche Beleuchtung weist noch Energieeinsparungspotential auf. Lampen mit großer Wattleistung sind ggf. mit energiesparenden Alternativen zu tauschen.

Schlussbemerkung

KLASSE

Das Gebäude befindet sich in der Energieklasse D. Zur Erreichung der nächsten Klasse (C) ist zb. folgende Maßnahme möglich:

Verbesserung der Großflächenverglasungen

Diese Maßnahme stellt jedoch keine Endlösung dar.

Zur Erreichung einer Energieklasse nach heutigem Standard ist eine umfassende Sanierung notwendig. Diese würde Maßnahmen in folgenden Bereichen beinhalten:

- Verglasungsverbesserung
- Wärmeschutzfassade

Empfehlungen zur Verbesserung GASSLHOF

- Fußbodendämmung
- Heizungsoptimierung

SCHLUSS

Die genannten Verbesserungen sind lediglich Grundmaßnahmen. Spezielle Anforderungen können sich durch unterschiedliche Nutzungsansprüche ergeben. Zu diesem Zweck ist die Erstellung eines Sanierungskonzeptes anzuraten. Die größten Einsparungen werden bei einer gesamtheitlichen Betrachtung erzielt.

Im Anhang des Energieausweises ist anzugeben (OIB 2011): Empfehlung von Maßnahme deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist.

Projektanmerkungen GASSLHOF

Allgemein

ENERGIEAUSWEIS ALLGEMEIN

Beim Bau, beim Verkauf oder bei der Vermietung von Gebäuden ist gemäß der EU-Richtlinie OIB6 ein Energieausweis vorzulegen, der nicht älter als 10 Jahre sein darf. Ab Dezember 2012 tritt das neue Energieausweisvorlagegesetz in Kraft. Hier werden u.a. inhaltliche Merkmale, sowie rechtliche Bestimmungen im Zusammenhang mit Energieausweisen und deren Vorlage geregelt.

Der Ausweis ermöglicht den Verbrauchern einen Vergleich und eine Beurteilung der Energieeffizienz des Gebäudes und muss darüber hinaus Empfehlungen für Verbesserungsmaßnahmen enthalten. In Österreich ist die Verwendung des Energieausweises besonders weit fortgeschritten, da viele Landesregierungen die Wohnbauförderung in Abhängigkeit der Energiekennzahl vergeben.

Der Energieausweis ist also eine Art Typenschein für Ihr Haus.

Er beinhaltet wertvolle Informationen, wie z.B. den Energiebedarf, die Wärmeverluste durch die einzelnen Bauteile und durch die Lüftung, die Energiegewinne von der Sonne sowie die Heizlast Ihres Gebäudes. Bei einem späteren Umbau oder einer späteren Sanierung des Hauses sind diese Angaben für die Berechnung verschiedenster Maßnahmen sehr wertvoll.

DAS OBJEKT

Beim vorliegenden Objekt handelt es sich um ein nicht Wohngebeäude in Massivbauweise. Das Gebäude besteht aus einem Ältbau (Alter unbekannt), sowie 2 Zubauabschnitten aus den Jahren 1993 u. 1997. Insgesamt wurde eine konditionierte Teilunterkellerung sowie ein konditioniertes Erdgeschoß mit darüberliegendem konditionierten Obergeschoß und einem unkonditionierten Dachgeschoß hergestellt.

Die Berechnung dieses Energieausweis stützt sich auf die vorgelegten Einreichpläne und Angaben des Kunden. Es wurden keine Materialuntersuchungen durchgeführt. Die Bauteilbeschreibungen der Einreichungen wurden übernommen.

LAGE

Das Gebäude befindet sich im Marktgebiet der Marktgemeinde Steinakirchen am Forst. Die Umgebung wird durch Bebauungsklasse 2 gebildet. Die Verbauung ist geschlossen. Das Gelände ist nach Nordwesten hin ansteigend. Hier herscht eine direkte Verbauung durch das Nachbargebäude.

LOKALAUGENSCHEIN

Folgende Situationen wurden beim Lokalaugenschein festgestellt:

- hingegen der planlichen Darstellung sind im Keller 3 Fenster situiert
- die Gaslagerung erfolgt im Nordosten nicht im Südosten somit entfällt die Nische im Keller
- Die Fenster im Lager sind durch das Gaslager kleiner ausgeführt
- 2 Fenster im Südwesten des EG sind kleiner ausgeführt
- Die Fluchttür im Stiegenhaus hat zusätzlich eine Oberlichte

Bauteile

Die Bauteilbeschreibungen beziehen sich lediglich auf thermische Merkmale.

BÖDEN

Der EG Fußboden bildet den Abschluß gegen das konditionierte Kellergeschoß sowie zum Erdreich. Der Aufbau der Böden ist bauzeitgemäß und wird im Altbau ohne Dämmung sowie in den Zubauten mit bauzeitentsprechenden Dämmstärken gebildet. Es wurden keine Bodenuntersuchungen vorgenommen. Die Berechnung beruht auf den Plandarstellungen und der Baubeschreibung. Die Decke zum Gewölbekeller wurde vereinfacht berücksichtigt und als Decke zu unbeheizt angenommen.

DECKEN

Die EG Decken bilden warme Zwischendecken und wurden aus der Bauteilbeschreibung übernommen. Dadurch ist keine nähere Betrachtung in der Berechnung notwendig. Der Dachbodenbereich wurde bereits mittels Dachbodendämmelement mit Trittplatte (15,5cm) gedämmt. Der Altbau weist eine leicht geringere Dämmung mit einer darüberliegenden Porenverschlußplatte auf (Quelle: Plan u. Baubeschreibung) Die Flachdächer der beiden Zubauphasen wurden ähnlich ausgeführt und gleich in die Berechnung

v2014,030305 ANMERKUNG o11 - Niederösterreich

Projektanmerkungen

GASSLHOF

miteinbezogen. (12cm XPS)

WÄNDE

Die Außenwände wurden mit bauzeitgemäßen Materialien gerechnet. Die dadurch resultierenden U-Werte sind somit ebenfalls entsprechend der Bauzeiten.

DACH

Die Dachkonstruktion befindet sich außerhalb der konditionierten Hülle und ist somit nicht Teil der Berechnung.

Fenster

Die Fenstergrößen wurden dem Einreichplan aus 1997 entnommen. Die Werte für die Verglasung wurde aus der Baubeschreibung übernommen und mit 1,3W/m²K in die Berechnung integriert. Die Portalkonstruktion wurde mit üblichen Werten berücksichtigt.

Geometrie

Sämtliche Maße wurden aus den Einreichplänen der Jahre 1993 und 1997 entnommen. Es wurde lediglich eine augenscheinliche Überprüfung an Ort und Stelle durchgeführt. Die Überprüfung ergab eine Übereinstimmung mit den Plänen.

Haustechnik

HEIZUNG

Das Gebäude wird derzeit durch eine zentrale Ölfeuerungsanlage beheizt. Es bestehen ausserdem elektrische Heizpaneele It. Baubeschreibung. Die

Heizung befindet sich um unkonditionierten und erdberührten Teil des Erdgeschoßes.

WARMWASSER

Die Warmwasserbereitung erfolgt zum Teil mit der Heizung und zum Teil elektrisch.

LÜFTUNG

Es ist eine Abluftanlage ohne Wärmerückgewinnung installiert. Ein Heizregister ist jedoch angeschlossen.

Heizlast Abschätzung GASSLHOF

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr

Planer / Baufirma / Hausverwaltung

Marktgemeinde Steinakirchen am Forst

Marktplatz 13

3261 Steinakirchen am Forst

Tel.:

Norm-Außentemperatur:

-15,8 °C

Standort: Steinakirchen am Forst

Berechnungs-Raumtemperatur:

20 °C

Brutto-Rauminhalt der

2 22

Temperatur-Differenz:

35,8 K

beheizten Gebäudeteile: Gebäudehüllfläche:

6.563,38 m³ 2.670,86 m²

1	The same of the sa	- coudado	idillacito.		2.070,86	m-
Baut	eile	Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	UAIIm2 ICI	f	ffh	
AD01	DB Atlbau Saal 1 OG	291,40	[W/m² K] 0,323	[1]	[1]	[W/K]
AD02		107,77	0,323	0,90		84,58
AD03		145,51	0,323	0,90		31,28
AW01	AW Altbau	218,84	0,229	0,90		30,00
AW02	2 AW Zubau 1	126,57		1,00		191,97
AW03	3 AW Zubau 2	231,64	0,474	1,00		59,95
	AW Büro KG	12,17	0,333	1,00		77,07
FD01	AD Halle OG		0,386	1,00		4,70
FE/TÜ	Fenster u. Türen	290,87	0,280	1,00		81,40
EB01		202,02	1,948			393,45
EB02	the strategy of the strategy o	116,25	3,013	0,50		175,12
EB03	EB Zubau <1,5m	204,60	3,013	0,70		431,49
EC01	EB BÜRO - KG	327,37	0,525	0,70		120,35
EW01		74,61	0,525	0,50		19,59
	EW Altbau <1,5m	81,14	0,392	0,60		19,09
	EW Altbau >1,5m	23,30	3,774	0,80		70,34
ID01	ZD EG unbeheizt	22,94	3,774	0,60		51,95
IW01	IW unbeheizt	128,72	0,477	0,70		42,99
IW02	Wand zu unkonditioniertem geschlossenen	55,83	0,769	0,70		30,06
	Dachraum	9,29	0,985	0,90		8,23
	ZW Grundgrenze	62,49	0,459			
ZW02	Zwischenwand zu konditioniertem Raum	31,59	0,769			
	Summe OBEN-Bauteile	851,55	0,100			
	Summe UNTEN-Bauteile	851,55				
	Summe Außenwandflächen	716,61				
	Summe Innenwandflächen	65,12				
	Summe Wandflächen zum Bestand	94,08				
	Fensteranteil in Außenwänden 20,4 %	184,02				
	Fenster in Innenwänden	2,00				
	Fenster in Deckenflächen	16,00				
		200				

Heizlast Abschätzung GASSLHOF

Summe	[W/K]	1.924
Wärmebrücken (vereinfacht)	[W/K]	192
Transmissions - Leitwert L _T	[W/K]	2.115,95
Lüftungs - Leitwert L _V	[W/K]	2.115,23
Gebäude-Heizlast Abschätzung Luftwechsel = 2,00	1/h [kW]	151,5
Flächenbez, Heizlast Abschätzung (1.495 m²)	[W/m ² BGF]	101,29

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers.

Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

Pi	rojekt: GASSLHOF		Blatt-N	lr.:	1
A	uftraggeber <mark>Marktgemeinde Steinakirchen</mark> a	ım Forst		eitungsnr.:	
	auteilbezeichnung: 3 BÜRO - KG	Kurzbezeichnung EC01	:	T	
	auteiltyp: bestehend danliegender Fußboden in konditioniertem Keller	' (>1,5m unter			
Wa	ärmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946	1/4		
	U - Wert	0,53 [W/m²K]	0 0	000000	000000
L				Α	M 1 : 20
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d/\lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	· iledel1	В	0,020	1,300	0,015
	Estrich PAE-Folie	В	0,060	1,330	0,045
	EPS-W20	В	0,0002	0,230	0,001
5	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	В	0,060	0,038	1,579
_	Stahlbeton	В	0,020	0,700	0,029
	Rollierung	B *	0,150	2,300	0,065
- 11		B *	0.100	0.700	0.143

Summe der Wärmeübergangswiderstände	D . D		
1 A fin	R _{si} +R _{se}	0,170	[m²K/W]
	$R_T = R_{si} + \Sigma R_t + R_{se}$	1,904	[m²K/W]
Wärmedurchgangskoeffizient	$U = 1/R_T$	0,53	[W/m²K1

0,100

0,310

0,410

0,700

0,143

Dicke des Bauteils [m]

wärmetechnisch relevante Dicke des Bauteils [m]

^{*...} diese Schicht zählt nicht zur Berechnung

Proj	ekt: GASSLHOF		Blatt-Nr.	:	2
Auft	raggeber Marktgemeinde Steinakirchen	am Forst	Bearbei	tungsnr.:	
	teilbezeichnung: Altbau >1,5m	Kurzbezeichnung EB01): 	l	
	teiltyp: bestehend anliegender Fußboden (>1,5m unter Erdreich)				
Wäi	medurchgangskoeffizient berechnet nach Öl U - Wert	NORM EN ISO 6946 3,01 [W/m²K]	0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000
Kor	struktionsaufbau und Berechnung				
,	Baustoffschichten		d	λ	$R = d / \lambda$
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Fliesen	В	0,020	1,300	0,015
	Estrich	В	0,050	1,330	0,038
200	PAE-Folie	В	0,0002	0,230	0,001
4	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) B	0,030	0,700	0,043
	Stahlbeton	В	0,150	2,300	0,065
6	Rollierung	В	* 0,100	0,700	0,143
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,250		
	ke des Bauteils [m]		0,350		
Sui	nme der Wärmeübergangswiderstände F	R _{si} +R _{se}		0,170	[m²K/W]
		$R_T = R_{si} + \sum R_t +$	R _{se}	0,332	[m²K/W]
		J=1/R _T		3,01	[W/m²K]

^{*...} diese Schicht zählt nicht zur Berechnung

0,250

0,350

U-Wert Berechnung GASSLHOF

rojekt: GASSLHOF		Blatt-N	lr -	•
Herogobor Mould		Diatt-iv		3
antaggeber Marktgemeinde Steinakirchen a	m Forst	Bearbe	eitungsnr.:	
	Kurzbezeichnung EB02			
irmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946			
U - Wert	3,01 [W/m²K]	00	00000000 0000000	
		0 0-	A	M 1 : 10
nstruktionsaufbau und Berechnung				
Baustoffschichten		d	2	$R = d/\lambda$
von innen nach außen			200	
Bezeichnung		[m]		Durchlaßw. [m²K/W]
	В	0.020	(3)	0,015
	В			0,038
	В			0,001
Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	В			0,001
	В			0,045
	В *	0,100		0,143
	auteilbezeichnung: B Altbau <1,5m auteiltyp: bestehend danliegender Fußboden (<=1,5m unter Erdreich) ärmedurchgangskoeffizient berechnet nach ÖNO U - Wert mstruktionsaufbau und Berechnung Baustoffschichten von innen nach außen	Althau <1,5m Buteilbezeichnung: Buteiltyp: bestehend danliegender Fußboden (<=1,5m unter Erdreich) Armedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946 U - Wert 3,01 [W/m²K] Baustoffschichten von innen nach außen Bezeichnung Fliesen Bestrich Bestrich PAE-Folie BSchüttungen aus Sand, Kies, Splitt (1800 kg/m³) BStahlbeton BRollierung Kurzbezeichnung Kurzbezeichnung EB02 Murzbezeichnung EB02 Augustoffschichten Bestrich Bestr	Auteilbezeichnung: Baltinus: Baltinu	Auteilbezeichnung: Balti-Nr.: Bearbeitungsnr.: Buteilbezeichnung: BAltbau <1,5m Buteiltyp: bestehend danliegender Fußboden (<=1,5m unter Erdreich) Brimedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946 U - Wert 3,01 [W/m²K] Baustoffschichten Von innen nach außen Bezeichnung Bezeichnung Fliesen B 0,020 1,300 Estrich B 0,050 1,330 PAE-Folie B 0,0002 0,230 Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) B 0,150 2,300 Rollierung B 1 0,100 0,700 Rollierung B 2 0,100 0,700 Rollierung B 4 0,100 0,700

Summe der Wärmeübergangswiderstände	R _{si} +R _{se}	0,170	[m²K/W]
Wärmedurchgangswiderstand	$R_T = R_{si} + \Sigma R_t + R_{se}$	0,332	[m²K/W]
Wärmedurchgangskoeffizient	$U = 1/R_T$	3,01	[W/m²K]

^{*...} diese Schicht zählt nicht zur Berechnung

Dicke des Bauteils [m]

wärmetechnisch relevante Dicke des Bauteils [m]

Proj	ekt: GASSLHOF		Blatt-Nr.	:	4
Auft	raggeber Marktgemeinde Steinakirchen a	m Forst	Bearbei	tungsnr.:	
	teilbezeichnung: Zubau <1,5m	Kurzbezeichnung: EB03		ı	
	teiltyp: bestehend anliegender Fußboden (<=1,5m unter Erdreich)				
Wäi	medurchgangskoeffizient berechnet nach ÖNC U - Wert	0,53 [W/m²K]	0000000000000		
				Α	M 1:20
Kor	struktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	R = d / λ
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Fliesen	В	0,020	1,300	0,015
2	Estrich	В	0,060	1,330	0,045
3	PAE-Folie	В	0,0002	0,230	0,001
4	EPS-W20	В	0,060	0,038	1,579
5	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	В	0,020	0,700	0,029
6	Stahlbeton	В	0,150	2,300	0,065
	Rollierung	B *	0,100	0,700	0,143
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,310		
Dic	ke des Bauteils [m]		0,410		
0.	mme der Wärmeübergangswiderstände R si	+ R		0,170	[m²K/W]
	Time der vvarmeubergangswiderstand	$+R_{se}$ = $R_{si} + \Sigma R_t + R_t$	3	1,904	[m²K/W]
	rmedurchgangswiderstand R_T rmedurchgangskoeffizient $U =$	$\frac{-N_{si} \cdot Z \cdot N_{t} \cdot I}{1/R_{T}}$	'se	0,53	[W/m²K]

^{*...} diese Schicht zählt nicht zur Berechnung

Projekt: GASSLHOF	9	Blatt-N	Nr.:			
Auftraggeber Marktgemeinde Steinakirchen a	am Forst	Bearb	eitungsnr.:			
Bauteilbezeichnung: ZD BÜRO KG	Kurzbezeichnung: ZD01	75	l Novas			
Bauteiltyp: bestehend warme Zwischendecke						
Wärmedurchgangskoeffizient berechnet nach ÖNC U - Wert	ORM EN ISO 6946 0,50 [W/m²K]			M 1 : 10		
Konstruktionsaufbau und Berechnung				W 1. 10		
Baustoffschichten		d	λ	$R = d/\lambda$		
von innen nach außen		Dicko	Loitfähigkeit	D 110		

Ko	not wildle			Α	M 1 : 1
NOI	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d/\lambda$
	von innen nach außen		Dicke	Leitfähigkeit	
Nr	Bezeichnung		[m]	[W/mK]	Durchlaßw.
1	Fliesen	В			[m²K/W]
2	Estrich		0,020		0,015
	PAE-Folie	B	0,060		0,045
	EPS-W20	В	0,0002	0,230	0,001
_		B	0,060	0,038	1,579
6	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³) Stahlbeton	В	0,020	0,700	0,029
		В	0,200	2,300	0,087
DICK	ce des Bauteils [m]		0,360		0,001
			II .		
	me der Wärmeübergangswiderstände R _{si} + R	se		0,260	[m²K/W]
	medurchgangswiderstand $R_{T} = R_{c}$	$s_i + \sum R_t + 1$	Roo	2,016	[m²K/W]
Wär	medurchgangskoeffizient U = 1 / R	T	26	0,50	[W/m²K]

Pro	jekt: GASSLHOF		3	Blatt-Nr.		6
Auf	traggeber Marktgemeinde St	einakirchen a	m Forst	Bearbeit	ungsnr.:	
	iteilbezeichnung: Altbau EG		Kurzbezeichnung: ZD02		I	
	ıteiltyp: bestehend rme Zwischendecke					
Wä	rmedurchgangskoeffizient bere	echnet nach ÖNG U - Wert	0,38 [W/m²K]			
					Α	M 1:20
Koı	nstruktionsaufbau und Berechn	ung				
	Baustoffschichten			d	λ	Anteil
Nr	von innen nach außen Bezeichnung			Dicke [m]	Leitfähigkeit [W/mK]	[%]
and the same	Massivparkett		В	0,020	0,160	
2	Blindboden		В	0,024	0,140	
	Diagol dozw					400
3	Riegel dazw.		В	0.050	0,120	12,3
	Steinwolle MW-W		В	0,050	0,043	12,3 87,7
4	Steinwolle MW-W KI Trittschall-Dämmplatte TP		B B	0,035	0,043 0,035	
4 5	Steinwolle MW-W KI Trittschall-Dämmplatte TP Decke Bestand		В	0,035 0,250	0,043	
4 5	Steinwolle MW-W KI Trittschall-Dämmplatte TP		B B	0,035	0,043 0,035	
4 5 Did	Steinwolle MW-W KI Trittschall-Dämmplatte TP Decke Bestand	nomogene Schi 0,650 Breite [m	B B B	0,035 0,250 0,379	0,043 0,035 2,300 g nach ÖNORM	87,7
4 5 Did	Steinwolle MW-W KI Trittschall-Dämmplatte TP Decke Bestand cke des Bauteils [m] sammengesetzter Bauteil - 1 inh		B B B	0,035 0,250 0,379 Berechnun	0,043 0,035 2,300 g nach ÖNORM R _{si} + R	87,7 EN ISO 6946)

Auftraggeber Marktgemeinde Steinakirchen a Bauteilbezeichnung: ZD Zubau EG Bauteiltyp: bestehend warme Zwischendecke Wärmedurchgangskoeffizient berechnet nach ÖNO U - Wert	Kurzbezeichnung ZD03		eitungsnr.:	M 1 : 20
ZD Zubau EG Bauteiltyp: bestehend warme Zwischendecke Wärmedurchgangskoeffizient berechnet nach ÖNO	ZD03 PRM EN ISO 6946		1 ()////////////////////////////////////	M 1 : 20
warme Zwischendecke Wärmedurchgangskoeffizient berechnet nach ÖNO			A	M 1 : 20
			A	M 1 : 20
			Α	M 1 : 20
Konstruktionssuft		500		
Konstruktionsaufbau und Berechnung				,
Baustoffschichten		d	λ	Anteil
von innen nach außen Nr Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	[%]
1 Massivparkett	В	0,020	0,160	[70]
2 Blindboden	В	0,024	0,140	
3 Riegel dazw. Steinwolle MW-W	В		0,120	12,3
4 KI Trittschall-Dämmplatte TP	В	0,050	0,043	87,7
5 Stahlbetondecke	В	0,035	0,035	
Dicke des Bauteils [m]	В	0,250	2,300	
6.4		0,379		215 287
Zusammengesetzter Bauteil - 1 inhomogene Schicht Riegel: Achsabstand [m]: 0,650 Breite [m]:	0,080	erechnung	nach ÖNORM E R _{si} + R _s	N ISO 6946) e = 0,260
Oberer Grenzwert: R _{To} = 2,7084 Unterer Grenzwert	: R _{Tu} = 2,6179	П	$R_T = 2,6632$	Im2l/AAII
Wärmedurchgangskoeffizient U = 1	/ R _T		1. M. 1991 14 140	? [m²K/W] V/m²K]

Proj	ekt: GASSLHOF		Blatt-Nr.	:	8
Aufi	raggeber Marktgemeinde Steinakirchen	am Forst	Bearbei	tungsnr.:	
	teilbezeichnung: EG unbeheizt	Kurzbezeichnung: ID01		I	
	teiltyp: bestehend Boden zu sonstigem Pufferraum (nach unten)				
Wä	rmedurchgangskoeffizient berechnet nach ÖN U - Wert	ORM EN ISO 6946 0,48 [W/m²K]			M 1 : 10
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Fliesen	В	0,020	1,300	0,015
	Estrich	В	0,060	1,330	0,045
3	PAE-Folie	В	0,0002	0,230	0,001
	EPS-W20	В	0,060	0,038	1,579
5	Schüttungen aus Sand, Kies, Splitt (1800 kg/m³)	В	0,020	0,700	0,029
6	Stahlbeton	В	0,200	2,300	0,087
Dic	ke des Bauteils [m]		0,360		
Sui	mme der Wärmeübergangswiderstände R	si + R se		0,340	[m²K/W]
	rmedurchgangswiderstand R	$T = R_{si} + \Sigma R_t + F$	₹se	2,096	[m²K/W]
Wä	rmedurchgangskoeffizient U	= 1 / R _T		0,48	[W/m ² K]

Projekt: GASSLHOF		Blatt-N	lr.:	9
Auftraggeber Marktgemeinde Steinakirchen	am Forst	Bearbe	eitungsnr.:	
Bauteilbezeichnung: DB Atlbau Saal 1 OG	Kurzbezeichnung:		Α	
Bauteiltyp: bestehend Decke zu unkonditioniertem geschloss. Dachrau	m	. V	XXXXXXX	××××××××××××××××××××××××××××××××××××××
Wärmedurchgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946			
U - Wert	0,32 [W/m²K]	ZZ	//////////////////////////////////////	
			I	M 1:20
Konstruktionsaufbau und Berechnung				
Baustoffschichten		d	λ	$R = d / \lambda$
von außen nach innen Nr Bezeichnung		Dicke	Leitfähigkeit	Durchlaßw.
		[m]	[W/mK]	[m²K/W]
1 4.102.02 Porenverschlußplatte 2,5 cm	В	0,025	0,130	0,192
2 Steinwolle MW(SW)-PT 10 (120 kg/m³)	В	0,100	0,040	2,500
3 Betonhohldielendecke (1400 kg/m³)	В	0,250	1,200	0,208
Dicke des Bauteils [m]		0,375		- 1,200
Summe der Wärmeübergangswiderstände R s	L D			
	i + R se		0,200	[m²K/W]
1479	$= R_{si} + \sum_{t} R_{t} + R_{s}$	е	3,100	[m²K/W]
Janigonoomizioni UE	TITI		0,32	[W/m ² K]

	iekt: GASSLHOF		Blatt-Nr.	3	10
Auf	traggeber Marktgemeinde Steinakirchen a	ım Forst	Bearbeit	ungsnr.:	
	iteilbezeichnung: Altbau Saal 2 OG	Kurzbezeichnung: AD02		Α	
	ıteiltyp: bestehend cke zu unkonditioniertem geschloss. Dachraum		W.	**********	
Wä	rmedurchgangskoeffizient berechnet nach ÖNG	ORM EN ISO 6946			
	U - Wert	0,32 [W/m²K]	- Andrew		
				I	M 1:20
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
Nr	von außen nach innen		d Dicke [m]	λ Leitfähigkeit [W/mK]	$R = d / \lambda$ Durchlaßw. $[m^2K/W]$
Nr 1	von außen nach innen Bezeichnung	В	Dicke	Leitfähigkeit	Durchlaßw. [m²K/W] 0,192
1	von außen nach innen Bezeichnung 4.102.02 Porenverschlußplatte 2,5 cm	B B	Dicke [m]	Leitfähigkeit [W/mK] 0,130 0,040	Durchlaßw. [m²K/W] 0,192 2,500
1 2	von außen nach innen Bezeichnung		Dicke [m] 0,025 0,100 0,250	Leitfähigkeit [W/mK] 0,130	Durchlaßw. [m²K/W] 0,192
1 2	von außen nach innen Bezeichnung 4.102.02 Porenverschlußplatte 2,5 cm Steinwolle MW(SW)-PT 10 (120 kg/m³)	В	Dicke [m] 0,025 0,100	Leitfähigkeit [W/mK] 0,130 0,040	Durchlaßw. [m²K/W] 0,192 2,500
1 2	von außen nach innen Bezeichnung 4.102.02 Porenverschlußplatte 2,5 cm Steinwolle MW(SW)-PT 10 (120 kg/m³) Betonhohldielendecke (1400 kg/m³)	В	Dicke [m] 0,025 0,100 0,250	Leitfähigkeit [W/mK] 0,130 0,040	Durchlaßw. [m²K/W] 0,192 2,500
1 2 3 Dic	von außen nach innen Bezeichnung 4.102.02 Porenverschlußplatte 2,5 cm Steinwolle MW(SW)-PT 10 (120 kg/m³) Betonhohldielendecke (1400 kg/m³) cke des Bauteils [m]	B B	Dicke [m] 0,025 0,100 0,250	Leitfähigkeit [W/mK] 0,130 0,040 1,200	Durchlaßw. [m²K/W] 0,192 2,500 0,208
1 2 3 Dic	von außen nach innen Bezeichnung 4.102.02 Porenverschlußplatte 2,5 cm Steinwolle MW(SW)-PT 10 (120 kg/m³) Betonhohldielendecke (1400 kg/m³) cke des Bauteils [m] mme der Wärmeübergangswiderstände	В	Dicke [m] 0,025 0,100 0,250 0,375	Leitfähigkeit [W/mK] 0,130 0,040	Durchlaßw. [m²K/W] 0,192 2,500

4,366

0,23

 $[m^2K/W]$

[W/m²K]

U-Wert Berechnung **GASSLHOF**

Wärmedurchgangswiderstand

Wärmedurchgangskoeffizient

Projekt: GASSLHOF		Blatt-N	ir.:	11
Auffraggeber Marktgemeinde Steinakirchen a	am Forst		eitungsnr.:	11
Bauteilbezeichnung: DB Zubau OG	Kurzbezeichnung:	7	A	Y Y)
Bauteiltyp: bestehend Decke zu unkonditioniertem geschloss. Dachraum		77		
Wärmedurchgangskoeffizient berechnet nach ÖNC	PRM EN ISO 6946			
U - Wert	0,23 [W/m²K]			
		1//	//////////////////////////////////////	M 1 : 10
Konstruktionsaufbau und Berechnung				
Baustoffschichten		d	λ	$R = d/\lambda$
von außen nach innen Nr Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
1 Heralan-E-02 (Steinwolle-Platte)	В	0,155	0,038	4,079
2 Stahlbeton Dicke des Bauteils [m]	В	0,200	2,300	0,087
Dione des Dauteils [m]		0,355		
Company of Marin				
	R _{se}		0,200	[m²K/W]

 $\frac{R_T = R_{si} + \sum R_t + R_{se}}{U = 1/R_T}$

Proj	ekt: GASSLHOF		Blatt-Nr.	:	12
Aufl	raggeber Marktgemeinde Steinakirchen a	am Forst	Bearbei	ungsnr.:	
	teilbezeichnung: Halle OG	Kurzbezeichnung: FD01	. 00	A	0 0 0 0 0 0
	teiltyp: bestehend Sendecke, Wärmestrom nach oben				
Wä	rmedurchgangskoeffizient berechnet nach ÖN U - Wert	ORM EN ISO 6946 0,28 [W/m²K]			
				1	M 1:20
Koı	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d/\lambda$
Nr	von außen nach innen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Kies	В *	0,060	0,700	0,086
	Steinodur UKD Top (Schutz- u. Trennschichte)	В *	0,002	0,230	0,009
1 1,510	steinodur® UKD	В	0,120	0,037	3,243
4	PE-Folie als Trennschicht	В	0,0002	0,190	0,001
5	bit. Abdichtungsbahn geflämmt (2-lagig)	В	0,008	0,190	0,042
6	Gefällebeton i.M.	В	0,050	1,300	0,038
7	STB-Platte	В	0,200	2,300	0,087
	Innenputz	В	0,015	0,700	0,021
wä	rmetechnisch relevante Dicke des Bauteils [m]		0,393		
Dio	ke des Bauteils [m]		0,455		
Su	mme der Wärmeübergangswiderstände R	si + R se		0,140	[m²K/W]
	irmedurchgangswiderstand R	$T = R_{si} + \sum R_t +$	R _{se}	3,572	[m ² K/W]
W		= 1 / R _T		0,28	[W/m ² K]

^{*...} diese Schicht zählt nicht zur Berechnung

Pr	ojekt: GASSLHOF		Blatt-N	r.:	13
Au	ftraggeber Marktgemeinde Steinakirchen a	am Forst	Bearbe	eitungsnr.:	
	uteilbezeichnung: / BÜRO KG	Kurzbezeichnung:			
	uteiltyp: bestehend lanliegende Wand (>1,5m unter Erdreich)		1		A
Wä	rmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946			
	U - Wert	0,39 [W/m²K]			
		(2000 N	147		M 1:10
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	R = d / λ
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
1	Zementputz	В	0,015	1,000	0,015
	Beton C25/30 B2	В	0,300	2,500	0,120
	steinodur® PSN LD WLG-035 ke des Bauteils [m]	В	0,080	0,035	2,286
Dic	te des bautens [m]		0,395		
	nme der Wärmeübergangswiderstände R si	+R _{se}		0,130	[m²K/W]
	medurchgangswiderstand R _T =	$=R_{si} + \Sigma R_t + R_s$	e	2,551	[m²K/W]
vva	medurchgangskoeffizient U =	1/R _T		0,39	[W/m²K]

Pro	jekt: GASSLHOF		Blatt-Nr.	:	14
Aui	fraggeber Marktgemeinde Steinakirche	n am Forst	Bearbei	tungsnr.:	
	uteilbezeichnung: / Altbau <1,5m	Kurzbezeichnung: EW02			
	uteiltyp: bestehend lanliegende Wand (<=1,5m unter Erdreich)		ı		A
Wä	rmedurchgangskoeffizient berechnet nach C	DNORM EN ISO 6946			
	U - Wert	3,77 [W/m²K]			
					M 1 : 10
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d/\lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Zementputz	В	0,015	1,000	0,015
2	Beton C25/30 B2	В	0,300	2,500	0,120
Die	cke des Bauteils [m]		0,315		•
				0.400	F 21 (0 A F
~	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,130	[m²K/W]
Su					
	ärmedurchgangswiderstand	$R_T = R_{si} + \sum R_t + F$ $U = 1 / R_T$	₹se	0,265 3,77	[m²K/W] [W/m²K]

	rojekt: GASSLHOF		- I		
1	Ex Hamble Street		Blatt-N	٧r.:	15
A	uftraggeber Marktgemeinde Steinakir	chen am Forst	Bearb	eitungsnr.:	
	auteilbezeichnung: V Altbau >1,5 m	Kurzbezeichnur EW03	ng:	¥//////	////
	Bauteiltyp: bestehend erdanliegende Wand (>1,5m unter Erdreich)				A
W	irmedurchgangskoeffizient berechnet na	ch ÖNORM EN ISO 694	3		
	U - We	rt 3,77 [W/m²K	L		
_				47777777	M 1 : 10
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	D - 1/0
	von innen nach außen		Dicke		$R = d/\lambda$
Nr	Bezeichnung		[m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Zementputz	В	0,015	1,000	
					0.015
2	Beton C25/30 B2	В			0,015
2		В	0,300		0,015 0,120
2	Beton C25/30 B2	В	0,300		
Dic	Beton C25/30 B2		0,300	2,500	0,120
Dic Sur Wä	Beton C25/30 B2 ke des Bauteils [m]	$R_{si} + R_{se}$ $R_{T} = R_{si} + \sum R_{t} +$	0,300 0,315		

Pro	jekt: GASSLHOF	2		Blatt-Nr	:	16
Auf	traggeber Marktgemeind e	e Steinakirchen	am Forst	Bearbei	tungsnr.:	
	uteilbezeichnung: 7 Altbau		Kurzbezeichnung: AW01	The state of the s		1 100
	Bauteiltyp: bestehend Außenwand					A
Wä	rmedurchgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946	***************************************		
		U - Wert	0,88 [W/m²K]			
						M 1:20
Koı	nstruktionsaufbau und Bere	echnung				
Koi	nstruktionsaufbau und Bere Baustoffschichten	echnung		d	λ	R = d / λ
	Baustoffschichten von innen nach außen	echnung		d Dicke [m]	λ Leitfähigkeit [W/mK]	$R = d / \lambda$ Durchlaßw. $[m^2K/W]$
Nr	Baustoffschichten von innen nach außen Bezeichnung	echnung	В	Dicke	Leitfähigkeit	Durchlaßw.
Nr 1	Baustoffschichten von innen nach außen Bezeichnung Innenputz	echnung	B B	Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
Nr 1 2	Baustoffschichten von innen nach außen Bezeichnung	echnung		Dicke [m] 0,020	Leitfähigkeit [W/mK] 1,000	Durchlaßw. [m²K/W] 0,020
Nr 1 2 3	Baustoffschichten von innen nach außen Bezeichnung Innenputz Vollziegelmauerwerk	echnung	В	Dicke [m] 0,020 0,650	Leitfähigkeit [W/mK] 1,000 0,700	Durchlaßw. [m²K/W] 0,020 0,929
Nr 1 2 3	Baustoffschichten von innen nach außen Bezeichnung Innenputz Vollziegelmauerwerk Aussenputz	echnung	В	Dicke [m] 0,020 0,650 0,030	Leitfähigkeit [W/mK] 1,000 0,700	Durchlaßw. [m²K/W] 0,020 0,929
Nr 1 2 3 Dic	Baustoffschichten von innen nach außen Bezeichnung Innenputz Vollziegelmauerwerk Aussenputz ke des Bauteils [m]		B B	Dicke [m] 0,020 0,650 0,030	Leitfähigkeit [W/mK] 1,000 0,700	Durchlaßw. [m²K/W] 0,020 0,929
Nr 1 2 3 Dic	Baustoffschichten von innen nach außen Bezeichnung Innenputz Vollziegelmauerwerk Aussenputz	iderstände R	В	Dicke [m] 0,020 0,650 0,030 0,700	Leitfähigkeit [W/mK] 1,000 0,700 1,400	Durchlaßw. [m²K/W] 0,020 0,929 0,021

Pro	ojekt: GASSLHOF		Blatt-N	lr.:	1
Au	ftraggeber <mark>Marktgemeinde Steinakirchen</mark> a	am Forst	Bearbe	eitungsnr.:	
	uteilbezeichnung: / Zubau 1	Kurzbezeichnung AW02			
	Bauteiltyp: bestehend Außenwand				
Wä	rmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946			
	U - Wert	0,47 [W/m²K]	ANTERNATIONAL BOOKS OF THE STATE OF THE STAT		
Kor	struktionsaufbau und Berechnung				M 1 : 10
1101					
	Baustoffschichten		d	λ	$R = d/\lambda$
I r	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Innenputz	В	0,020	1,000	0,020
2	Hochlochziegel Mauerwerk KZM	В	0,380	0,200	1,900
	Aussenputz	В	0,030	1,400	0,021
DIC	e des Bauteils [m]		0,430		
	,				
Sum	me der Wärmeübergangswiderstände R si	+R _{se}		0,170	[m²K/W]
	medurchgangswiderstand R _T :	$=R_{si} + \Sigma R_t + R_t$	se	2,111	[m²K/W]
vvar	medurchgangskoeffizient U =	1/R _T		0,47	[W/m²K]

Pro	iekt: GASSLHOF		Blatt-Nr.	:	18
Auf	iraggeber Marktgemeinde Steinakirchen a	m Forst	Bearbei	tungsnr.:	
	teilbezeichnung: Zubau 2	Kurzbezeichnung: AW03	X STATE		
	Bauteiltyp: bestehend Außenwand				A
Wä	rmedurchgangskoeffizient berechnet nach ÖNO	RM EN ISO 6946	1871-300-000-000-000-000-000-000-000-000-00		
	U - Wert	0,33 [W/m²K]	ancess to		
			F-4		M 1 : 10
Koı	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
1	Innenputz	В	0,020	1,000	0,020
	POROTHERM 38 N+F	В	0,380	0,136	2,794
3	Aussenputz	В	0,030	1,400	0,021
Dic	ke des Bauteils [m]		0,430		
Cur	P	+ R		0,170	[m²K/W]
	mme der Wärmeübergangswiderstände R si irmedurchgangswiderstand R T	+ R _{se} = R _{si} + Σ R _t + F	2	3,005	[m²K/W]
		1/R _T	'se	0,33	[W/m²K]
vva	rmedurchgangskoeffizient U =	IINT		0,00	[AAVIII 16]

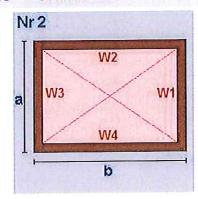
Projekt: GASSLHOF		Dla44 A	Lea	
		Blatt-N	ır.:	19
Auftraggeber Marktgemeinde Steinakirchen a	am Forst	Bearbe	eitungsnr.:	
Bauteilbezeichnung: AW Büro KG	Kurzbezeichnung AW04			
Bauteiltyp: bestehend Außenwand				A
Wärmedurchgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946			
U - Wert	0,39 [W/m²K]			
				M 1:10
Konstruktionsaufbau und Berechnung				
Baustoffschichten		d	λ	$R = d/\lambda$
von innen nach außen Nr Bezeichnung		Dicke	Leitfähigkeit	Durchlaßw.
		[m]	[W/mK]	[m²K/W]
1 Zementputz 2 Beton C25/30 B2	В	0,015	1,000	0,015
3 steinodur® PSN LD WLG-035	B	0,300	2,500	0,120
Dicke des Bauteils [m]	В	0,080	0,035	2,286
Time was Badions [m]		0,395		
Summe der Wärmeübergangswiderstände R _{si}	+R _{se}		0,170	[m²K/W]
vvarmedurchgangswiderstand R _T =	$=R_{si} + \Sigma R_t + R_s$	se	2,591	[m²K/W]
Wärmedurchgangskoeffizient U = 1	I/R _T		0,39	[W/m²K]

Pro	ekt: GASSLHOF		Blatt-Nr.	:	20
Aufl	raggeber Marktgemeinde Steinakirche	en am Forst	Bearbei	tungsnr.:	
	teilbezeichnung: Grundgrenze	Kurzbezeichnung: ZW01			
Bauteiltyp: bestehend Wand gegen andere Bauwerke an Grundstücks bzw.					///// A
Wä	rmedurchgangskoeffizient berechnet nach	ÖNORM EN ISO 6946			
	U - Wert	0,46 [W/m²K])		
		9	17		M 1:10
Koı	nstruktionsaufbau und Berechnung	,			
	Baustoffschichten		d	λ	$R = d/\lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Innenputz	В	0,020	1,000	0,020
2	Hochlochziegel Mauerwerk KZM	В	0,380	0,200	1,900
	ke des Bauteils [m]		0,400		
	5-5				
Su	mme der Wärmeübergangswiderstände	R _{si} +R _{se}		0,260	[m²K/W]
Wä	irmedurchgangswiderstand	$R_T = R_{si} + \Sigma R_t + I$	₹se	2,180	[m²K/W]
Wä	irmedurchgangskoeffizient	U=1/R _T		0,46	[W/m ² K]

Pro	ojekt: GASSLHOF		Blatt-N	lr.:	21
Au	fraggeber <mark>Marktgemeinde Steinakirchen</mark> a	ım Forst	Bearbe	eitungsnr.:	
	uteilbezeichnung: unbeheizt	Kurzbezeichnung			
	ıteiltyp: bestehend nd zu sonstigem Pufferraum		I		SA STANSASSASSASSASSASSASSASSASSASSASSASSASSA
Wä	rmedurchgangskoeffizient berechnet nach ÖNO	PRM EN ISO 6946			
	U - Wert	0,77 [W/m²K]			neasy near
			,		M 1 : 10
Kor	struktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d/\lambda$
	von innen nach außen Bezeichnung		Dicke	Leitfähigkeit	Durchlaßw.
_			[m]	[W/mK]	[m²K/W]
	Innenputz	В	0,020	1,000	0,020
3	2.304.52 Hochlochziegelmauer 30 cm Innenputz	В	0,300	0,300	1,000
	e des Bauteils [m]	В	0,020	1,000	0,020
2101	e des Dadiells [III]		0,340		
Sum	me der Wärmeübergangswiderstände R _{si} +				
När		R se		0,260	[m ² K/W]
		$R_{si} + \Sigma R_t + R_s$	e	1,300	[m²K/W]
- 41	medurchgangskoeffizient U = 1	/ R _T		0,77	[W/m²K]

4	ekt: GASSLHOF	,		Blatt-Nr		22
Auft	Auffraggeber Marktgemeinde Steinakirchen am Forst			Bearbei	tungsnr.:	
	teilbezeichnung: schenwand zu konditioniertem F	Raum	Kurzbezeichnung: ZW02	13.56 27.		nesce.
	Bauteiltyp: bestehend Zwischenwand zu konditioniertem Raum			1		A Stephenson
Wär	medurchgangskoeffizient bere	chnet nach ÖN	ORM EN ISO 6946			West Control
		U - Wert	0,77 [W/m²K]			হরণ্ড তা
						M 1:10
Kon	struktionsaufbau und Berechnu	na				
	on antionous and personne	9				3
	Baustoffschichten			d	λ	$R = d / \lambda$
		9		d Dicke [m]	λ Leitfähigkeit [W/mK]	R = d / λ Durchlaßw. [m²K/W]
Nr	Baustoffschichten von innen nach außen		В	Dicke	Leitfähigkeit	Durchlaßw.
Nr 1	Baustoffschichten von innen nach außen Bezeichnung		В В	Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
Nr 1	Baustoffschichten von innen nach außen Bezeichnung Innenputz			Dicke [m] 0,020	Leitfähigkeit [W/mK] 1,000	Durchlaßw. [m²K/W] 0,020
Nr 1 2 3	Baustoffschichten von innen nach außen Bezeichnung Innenputz 2.304.52 Hochlochziegelmauer 30		В	Dicke [m] 0,020 0,300	Leitfähigkeit [W/mK] 1,000 0,300	Durchlaßw. [m²K/W] 0,020 1,000
Nr 1 2 3	Baustoffschichten von innen nach außen Bezeichnung Innenputz 2.304.52 Hochlochziegelmauer 30 Innenputz		В	Dicke [m] 0,020 0,300 0,020	Leitfähigkeit [W/mK] 1,000 0,300	Durchlaßw. [m²K/W] 0,020 1,000
Nr 1 2 3 Dick	Baustoffschichten von innen nach außen Bezeichnung Innenputz 2.304.52 Hochlochziegelmauer 30 Innenputz ke des Bauteils [m]) cm	B B	Dicke [m] 0,020 0,300 0,020	Leitfähigkeit [W/mK] 1,000 0,300 1,000	Durchlaßw. [m²K/W] 0,020 1,000
Nr 1 2 3 Dick	Baustoffschichten von innen nach außen Bezeichnung Innenputz 2.304.52 Hochlochziegelmauer 30 Innenputz) cm ände R _s	В	Dicke [m] 0,020 0,300 0,020 0,340	Leitfähigkeit [W/mK] 1,000 0,300	Durchlaßw. [m²K/W] 0,020 1,000 0,020

Pro	ojekt: GASSLHOF		Blatt-N	r.:	23
Au	ffraggeber Marktgemeinde Steinakirchen	am Forst	Bearbe	itungsnr.:	
	uteilbezeichnung: and zu unkonditioniertem geschlossenen	Kurzbezeichnung:			J. Carlo
	Bauteiltyp: bestehend Wand zu unkonditioniertem geschlossenen Dachraum				A
Wä	rmedurchgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946			
	U - Wert	0,98 [W/m²K]			
					M 1 : 20
Ko	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	R=d/λ
Nr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
	Innenputz	В	0,020	1,000	0,020
	Vollziegelmauerwerk	В	0,500	0,700	0,714
	Aussenputz	В	0,030	1,400	0,021
Dic	ke des Bauteils [m]		0,550		
	nme der Wärmeübergangswiderstände R _s	+R se		0,260	[m²K/W]
	rmedurchgangswiderstand R _T	$=R_{si} + \Sigma R_t + R_t$	se	1,015	[m²K/W]
vva	rmedurchgangskoeffizient U =	1/R _T		0,98	[W/m²K]

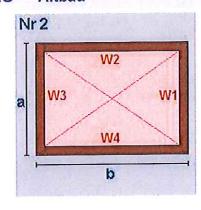


74.61

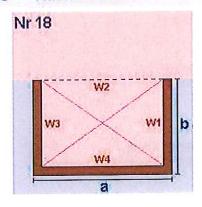
213,40

Geometrieausdruck GASSLHOF

KG Grundform

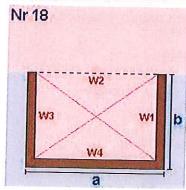



```
a = 8,04 b = 9,28 lichte Raumhöhe = 2,50 + obere Decke: 0,36 => 2,86m
             74,61m² BRI
                                213,40m3
BGF
             23,00m² EW01 EW BÜRO KG
Wand W1
             26,54m2 EW01
Wand W2
             10,92m<sup>2</sup> EW01
Wand W3
            Teilung 8,05 x 1,50 (Länge x Höhe) 12,08m<sup>2</sup> AW04 AW Büro
Wand W4
             12,43m<sup>2</sup> EW01
            Teilung Eingabe Fläche
14,11m² ZWO2 Wand zu Lager EG
             74,61m² ZD01 ZD BÜRO KG
Decke
             74,61m² EC01 EB BÜRO - KG
Boden
```


KG Summe

KG Bruttogrundfläche [m²]: KG Bruttorauminhalt [m³]:

EG Altbau

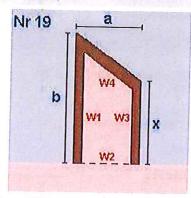


EG Küche+Halle

		= 3,10	+ obere Decke: 0,38 => 3,48m 433,83m ³
Wand W1 Wand W2	-53,96m²	IW01 I	wischenwand zu konditioniertem Raum W unbeheizt W Zubau 2
Wand W3 Wand W4 Decke Boden Teilung	53,96m ² 124,70m ² 50,09m ²	ZW02 Z ZD03 Z EB03 E	wischenwand zu konditioniertem Raum D Zubau EG B Zubau <1,5m
Lozzanig	, , ,		

EG Lager, STGH

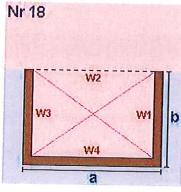
a = 15,51 b = 7,64 lichte Raumhöhe = 4,32 + obere Decke: 0,38 => 4,70m 118,50m² BRI 556,81m3


Wand W1 28,85m² IW01 IW unbeheizt Teilung 1,50 x 4,70 (Länge x Höhe) 7,05m² AW03 Wand zu Müllplatz Wand W2

-72,88m² ZW02 Zwischenwand zu konditioniertem Raum 35,90m² AW03 AW Zubau 2 72,88m² AW03 Wand W3

Wand W4

Decke 118,50m² ZD03 ZD Zubau EG 118,50m² EB03 EB Zubau <1,5m Boden


EG VR, AR

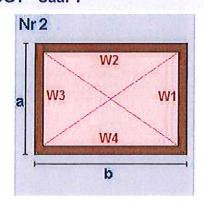
a = 6,20x = 4,50b = 5,00lichte Raumhöhe = 3,10 + obere Decke: 0,38 => 3,48m 29,45m² BRI 102,46m3 Wand W1 -17,40m² IW01 IW unbeheizt Wand W2 -21,57m² IW01 Wand W3 15,66m2 IW01

Wand W4 21,64m2 IW01 Decke 29,45m² ZD02 ZD Altbau EG Boden 29,45m² EB01 EB Altbau >1,5m

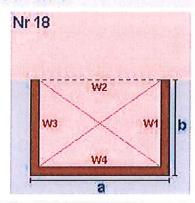
EG WFG

Von EG bis OG1 a = 6,61 b = 0,80lichte Raumhöhe = 4,32 + obere Decke: 0,38 => 4,70m BGF 5,29m2 BRI 24,85m³ Wand W1 3,76m² AW03 AW Zubau 2

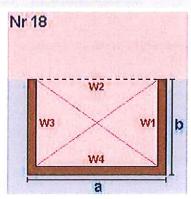
Wand W2 -31,06m2 AW03 Wand W3 3,76m2 AW03 Wand W4 31,06m2 AW03 Decke 5,29m² ZD03 ZD Zubau EG 5,29m² EB03 EB Zubau <1,5m Boden


EG Summe

EG Bruttogrundfläche [m²]: 569,33 EG Bruttorauminhalt [m³]: 2.131,73


Geometrieausdruck GASSLHOF

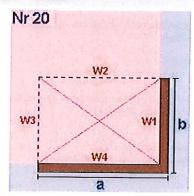
OG1 Saal 1


b = 23,50a = 12,40lichte Raumhöhe = 5,00 + obere Decke: 0,38 => 5,38m 291,40m2 BRI 1.566,28m3 Wand W1 66,65m² AW01 AW Altbau 126,31m² AW01 66,65m² AW01 Wand W2 Wand W3 119,29m² IWO2 Wand zu unkonditioniertem geschlossen Wand W4 Teilung 5,85 x 1,20 (Länge x Höhe) 7,02m2 AW01 über Halle Decke 291,40m2 AD01 DB Atlbau Saal 1 OG Boden -291,40m2 ZD02 ZD Altbau EG

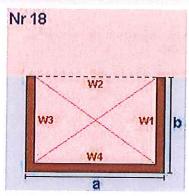
OG1 WFG

Von EG bis OG1 a = 6,61 b = 0,80lichte Raumhöhe = 4,32 + obere Decke: 0,39 => 4,71m 5,29m² BRI BGF 24,92m3 3,77m² AW03 AW Zubau 2 Wand W1 -31,15m² AW03 Wand W2 Wand W3 3,77m2 AW03 31,15m² AW03 Wand W4 5,29m² FD01 AD Halle OG Decke Boden -5,29m² ZD03 ZD Zubau EG

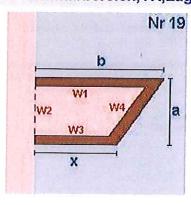
OG1 Mehrzwecksaal



a = 9,28 b = 15,68 lichte Raumhöhe = 4,00 + obere Decke: 0,36 => 4,36m BGF $145,51\text{m}^2$ BRI $633,70\text{m}^3$ Wand W1 $68,29\text{m}^2$ ZW02 Zwischenwand zu konditioniertem Raum Wand W2 $-40,41\text{m}^2$ IW02 Wand zu unkonditioniertem geschlossen Wand W3 $68,29\text{m}^2$ AW03 AW Zubau 2 Wand W4 $40,41\text{m}^2$ AW03 Decke $145,51\text{m}^2$ AD03 DB Zubau OG Boden $-145,51\text{m}^2$ ZD03 ZD Zubau EG


Geometrieausdruck GASSLHOF

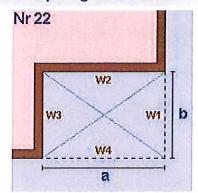
OG1 Halle


```
a = 6,23 b = 15,68
lichte Raumhöhe = 5,00 + obere Decke: 0,39 => 5,39m
           97,69m2 BRI
BGF
                           526,84m3
         -84,57m² ZWO2 Zwischenwand zu konditioniertem Raum
Wand W1
Wand W2
         -33,60m² IW02 Wand zu unkonditioniertem geschlossen
         -84,57m² ZWO2 Zwischenwand zu konditioniertem Raum
Wand W3
Wand W4
           33,60m<sup>2</sup> AW03 AW Zubau 2
Decke
          97,69m2 FD01 AD Halle OG
Boden
          -97,69m² ZD03 ZD Zubau EG
```

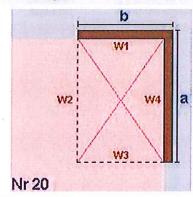
OG1 Saal 2


```
a = 7,60
              b = 14,18
lichte Raumhöhe = 4,00 + obere Decke: 0,38 => 4,38m
         107,77m2 BRI
BGF
                          471,49m3
Wand W1
          62,04\text{m}^2 ZW02 Zwischenwand zu konditioniertem Raum
         -33,25m² IW02 Wand zu unkonditioniertem geschlossen
Wand W2
Wand W3
          62,04m² ZW02 Zwischenwand zu konditioniertem Raum
Wand W4
          33,25m² AW02 AW Zubau 1
         107,77m<sup>2</sup> AD02 DB Altbau Saal 2 OG
Decke
Boden
          78,32m2 ID01 ZD EG unbeheizt
         -29,45m<sup>2</sup> ZD02 Decke zu VR,AR
Teilung
```

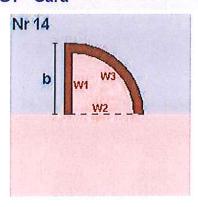
OG1 Sanitärbereich, VR, Lager




```
a = 15, 10
               b = 11,60
x = 8,60
lichte Raumhöhe = 3,00 + obere Decke: 0,39 => 3,39m
          152,51m2 BRI
                           517,50m3
Wand W1
           39,36m2 AW02 AW Zubau 1
Wand W2
          -51,24m² AW01 AW Altbau
          29,18m<sup>2</sup> AW02 AW Zubau 1
Wand W3
Wand W4
          52,24m2 ZW01 ZW Grundgrenze
Decke
          152,51m2 FD01 AD Halle OG
         102,11m<sup>2</sup> EB03 EB Zubau <1,5m
Boden
Teilung
          50,40m² ID01 Gewölbekeller
```

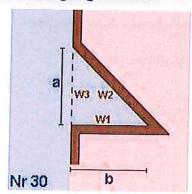


Geometrieausdruck GASSLHOF

OG1 Sprung zu Nachbar


```
a = 1,90 b = 9,00 
lichte Raumhöhe = 5,00 + obere Decke: 0,39 => 5,39m 
BGF -17,10\text{m}^2 BRI -92,22\text{m}^3 
Wand W1 -48,54\text{m}^2 ZW01 ZW Grundgrenze 
Wand W2 10,25\text{m}^2 ZW01 
Wand W3 48,54\text{m}^2 ZW01 
Wand W4 -10,25\text{m}^2 AW02 AW Zubau 1 
Decke -17,10\text{m}^2 FD01 AD Halle OG 
Boden -17,10\text{m}^2 EB03 EB Zubau <1,5m
```

OG1 Foyer

a = 3,90 b = 7,40lichte Raumhöhe = 3,00 + obere Decke: 0,39 => 3,39m a = 3,9028,86m² BRI BGF 97,93m³ 25,11m² ZWO2 Zwischenwand zu konditioniertem Raum Wand W1 -13,23m² AW01 AW Altbau Wand W2 -25,11m² AW02 AW Zubau 1 13,23m² AW02 Wand W3 Wand W4 28,86m² FD01 AD Halle OG Decke Boden 28,86m2 EB03 EB Zubau <1,5m


OG1 Gard


```
b = 7,40
lichte Raumhöhe = 5,00 + obere Decke: 0,39 => 5,39m
BGF 43,01m² BRI 231,95m³

Wand W1 -39,91m² AW01 AW Altbau
Wand W2 -39,91m² ZW02 Zwischenwand zu konditioniertem Raum
Wand W3 62,69m² AW02 AW Zubau 1
Decke 43,01m² FD01 AD Halle OG
Boden 43,01m² EB03 EB Zubau <1,5m
```

OG1 Eingangsbereich

a = 2,60 b = 2,60lichte Raumhöhe = 3,00 + obere Decke: 0,39 => 3,39m BGF -3,38m² BRI -11,47m³

-3,38m² EB03 EB Zubau <1,5m

Wand W1 8,82m² AW02 AW Zubau 1
Wand W2 -12,48m² AW02
Wand W3 8,82m² AW02
Decke -3,38m² FD01 AD Halle OG

Boden

OG1 Summe

OG1 Bruttogrundfläche [m²]: OG1 Bruttorauminhalt [m³]:

851,55 3.966,91

Deckenvolumen EC01

Fläche 74,61 m² x Dicke 0,31 m = $23,14 \text{ m}^3$

Deckenvolumen EB01

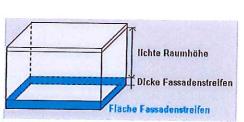
Fläche 116,25 m² x Dicke 0,25 m = $29,09 \text{ m}^3$

Deckenvolumen EB02

Fläche 204,60 m² x Dicke 0,25 m = $51,19 \text{ m}^3$

Deckenvolumen EB03

Fläche 327,37 m^2 x Dicke 0,31 $m = 101,55 m^3$


Deckenvolumen ID01

Fläche 128,72 m² x Dicke 0,36 m = $46,36 \text{ m}^3$

Bruttorauminhalt [m3]:

251,34

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
EW01	=	EC01	0,310m	26,59m	8,25m²
AW01	100	EB02	0,250m	35,90m	8,98m²
AW01	-	EB03	0,310m	-26,40m	-8,19m ²
AW02	-	EB03	0,310m	27,95m	8,67m ²
AW02	_	ID01	0,360m	7,60m	2,74m²
AW03	-	EB03	0,310m	34,29m	10,64m²
IW01	=	EB01	0,250m	-0,48m	-0,12m ²
IW01	-	EB02	0,250m	23,50m	5,88m ²
IW01	, =	EB03	0,310m	-9,37m	$-2,91m^2$
EW03	_	EB02	0,250m	12,40m	3,10m ²
AW04		EC01	0,310m	8,05m	2,50m ²
IW02	-	ID01	0,360m	-7,60m	$-2,74m^2$

Geometrieausdruck GASSLHOF

Gesamtsumme Bruttogeschoßfläche [m²]: Gesamtsumme Bruttorauminhalt [m³]: 1.495,50

6.563,38

Fenster und Türen GASSLHOF

Ту	р	Вац	ıteil /	Anz. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/ml	Ag C m²	Uw W/m²K	AxUx [W/K]		fs	z	amso
В	1		F	rüfnormmaß Typ 1 (T1)	1,23	1,48	1,82	1,30	1,70	0,06	0 1,27	1,57	100	0.64			100
В			F	rüfnormmaß Typ 2 (T2)	1,23	1,48	0.5		4,00	0,09		2,27		0,61			
В				rüfnormmaß Typ 3 (T3)	1,23	1,48		Contractor Contractor	4,00	0,09	-	2,40		0,61			9
											3,82	2,10		0,01			
hori	1													1			
В Т3	00	61 FD0		2 5,00 x 1,60	5,00	1,60	16,00	1,30	4,00	0,090	11,86	2,25	36,00	0,61	0,75	1,00	0,00
				2			16,00				11,86		36,00)			
N	1													1			
B T2	1000	1 AW0		1 1,80 x 2,40	1,80	2,40	4,32	1,30	4,00	0,090	3,30	2,18	9,43	0,61	0,75	1,00	0,00
B 	J OG	1 AW0		1 Foyer Türen	2,50	2,40	6,00				4,20	2,50	15,00	0,62	0,75	1,00	0,00
				2			10,32				7,50		24,43	0			
NO	1													1			
B B T2	EG			1 Lagertor	2,40	2,93	7,03				4,92	2,00	14,06	0,62	0,75	1,00	0,00
B T2	EG			2 2,00 x 2,60	2,00	2,60	10,40	1,30	4,00	0,090	8,16	2,11	21,91	0,61	0,75	1,00	0,00
B T1	EG			2 1,85 x 1,30 2 0,90 x 0,90	1,85	1,30	4,81	1,30	4,00	0,090	3,03	2,83	13,61	0,61	0,75	1,00	0,00
В	EG			Tür zu Schleuse	1,00	0,90	1,62	1,30	1,70	0,060	0,87	1,78	2,89	0,61	0,75	1,00	0,00
B T1	OG				0,90	2,00 1,30	2,00 2,34	1 20	4 70	0.000		2,00	2,80	0,62			0,00
B T1	OG-			0,70 x 1,00	0,70	1,00	0,70	1,30 1,30	1,70 1,70	0,060	1,33	1,82	4,25	0,61			0,00
B T2	OG.	1 AW03	. 2		5,85	2,50	29,25	1,30	4,00	0,060 0,090	0,33 23,69	1,92	1,34	0,61			0,00
			13	<u> </u>		•	58,15	1,00	1,00	0,000	42,33	2,05	59,85	0,61	0,75	1,00	0,00
NW					Î		7.663				42,00		120,71	i _			
В	EG	AW01	1	Eingang Nordwest	1,50	2,40	3,60				1,80	2.00	7.00	0.00			
B T1	OG1	AW03	1	1,00 x 2,00	1,00	2,00	2,00	1,30	1,70	0,060	1,26	2,00 1,79	7,20 3,57	55 U.S.	0,75		100
B T1	OG1	AW03	1	1,00 x 0,60	1,00	0,60	0,60	1,30	1,70	0,060	0,27	1,81	1,09	0,61	0,75 0,75		15
			3				6,20	- 18	10000 100	200-1200	3,33	.,,	11,86	0,01	0,75	1,00	0,00
SO					Ī						250 O		,				
B T1	KG	AW04	3	1,00 x 0,80	1,00	0,80	2,40	1,30	1,70	0,060	1,36	1,68	4,03	0,61	0,75	1.00	0.00
B T1	EG	AW01	5	1,00 x 1,25	1,00	1,25	6,25	1,30	1,70	0,060	3,81	1,73	10,78	0,61	0,75		DAMES.
B T1	EG	AW01	5	1,00 x 0,60	1,00	0,60	3,00	1,30	1,70	0,060	1,41	1,81	5,44	0,61	0,75		CONTROL OF THE PARTY OF THE PAR
B T1	EG	AW03	3	1,00 x 1,40	1,00	1,40	4,20	1,30	1,70	0,060	2,62	1,72	7,21	0,61	0,75		
B T1	EG	AW03	3	1,00 x 0,70	1,00	0,70	2,10	1,30	1,70	0,060	1,07	1,79	3,75	0,61	0,75	,00	0,00
B T1	EG	AW03	3		1,00	1,25	3,75	1,30	1,70	0,060	2,29	1,73	6,47	0,61	0,75		
B T1 B T1	EG OG1	AW03 AW01	3	(CATACON AND AND AND AND AND AND AND AND AND AN	1,00	0,60	1,80	1,30	1,70	0,060	0,84	1,81	3,26	0,61	0,75	,00	0,00
3 T1		AW03		1,00 x 1,70 1,00 x 1,40	1,00	1,70	17,00	1,30	1,70	0,060	10,66	1,76	29,87	0,61	0,75 1	,00	0,00
3 T1		AW03		1,00 x 0,70	1,00	1,40 0,70	8,40	1,30	1,70	0,060	5,24	1,72	14,41		0,75 1		
5 25			47	iles y eli e	1,00	0,70	4,20 53,10	1,30	1,70	0,060	2,13	1,79		0,61	0,75 1	,00 (0,00
sw			23.5		1"		03,10				31,43		92,73				
3 T1	EG	AW01	- 5	1,00 x 1,25	1,00	1,25	6 25	1 20	170	0.000		12					
3 T1	EG	AW01		1,00 x 0,60	0.00	0,60	6,25 3,00	1,30 1,30	1,70	0,060	3,81	1,73	tions are a		0,75 1		
3 T1	EG	AW01		1,00 x 1,00	INVANCES INVANCES	1,00	2,00	1,30	1,70 1,70	0,060	1,41	1,81			0,75 1		
3 T1	EG	AW01		1,00 x 0,40	2007047	0,40		1,30	1,70	0,060	1,15 0,27	1,75 1,90	200		0,75 1		50
T1	OG1	AW01		1,00 x 1,70	67	1,70		1,30	1,70		17,05	1,76	- 1		0,75 1 0,75 1		
T1	OG1	AW02	4	1,00 x 1,30	1.1	1,30		1,30	1,70	0,060	3,08	1,79	N=0),75 1,),75 1,		
			34				44,45				26,77		78,34	.,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,50
W				5.4							world (1965)		1				
ng. Die	tmor (Pindl At	_														

Ing. Dietmar Gindl, AE

GEQ von Zehentmayer Software GmbH www.geq.at v2014,030305 REPFEN1H o11 - Niederösterreich

Fenster und Türen **GASSLHOF**

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Hõhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf [W/K]	g	fs	Z	amsc
В	OG1	AW02	1	Foyer Türen	2,50	2,40	6,00				4,20	2,50	15,00	0,62	0,75	1,00	0,00
B T1	OG1	AW02	6	1,00 x 1,30	1,00	1,30	7,80	1,30	1,70	0,060	4,62	1,79	13,98	0,61	0,75	1,00	0,00
			7				13,80				8,82		28,98				
Summe			108				202,02			1	35,86		393.05				

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

Typ... Prüfnormmaßtyp z... Abminderungsfakt. für bewegliche Sonnenschutzeinricht. Abminderungsfaktor 1,00 ... keine Verschattung

B... Fenster gehört zum Bestand des Gebäudes amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Rahmenbreiten - Rahmenanteil **GASSLHOF**

Bezeichnung	Rb. re m	Rb.li m	Rb.ob m	Rb. u m	Anteil %	Stulp Anz.	Stb.	Pfost Anz.	Pfb. m	H-Spr. Anz.		Spb.	Bezeichnung - Glas/Rahmer
1,00 x 1,25	0,110	0,110	0,110	0,110	39						1	0,040	Kst Fenster
1,00 x 0,60	0,110	0,110	0,110	0,110	53						1	0,040	Kst Fenster
1,00 x 1,40	0,110	0,110	0,110	0,110	38						1	0,040	Kst Fenster
1,00 x 0,70	0,110	0,110	0,110	0,110	49						1	0,040	Kst Fenster
0,90 x 1,30	0,110	0,110	0,110	0,110	43					1	1	0,040	Kst Fenster
0,70 x 1,00	0,110	0,110	0,110	0,110	53					1	1	0,040	Kst Fenster
1,00 x 1,30	0,110	0,110	0,110	0,110	41					1	1	0,040	Kst Fenster
1,00 x 1,70	0,110	0,110	0,110	0,110	37					1	1	0,040	Kst Fenster
1,00 x 0,80	0,110	0,110	0,110	0,110	43								Kst Fenster
2,00 x 2,60	0,100	0,100	0,100	0,100	22			1	0,100				Metallrahmen ALU
1,85 x 1,30	0,100	0,100	0,100	0,100	37	1	0,140			1	2	0,040	Metallrahmen ALU
5,85 x 2,50	0,100	0,100	0,100	0,100	19			5	0,100				Metallrahmen ALU
5,00 x 1,60	0,120	0,120	0,120	0,120	26			4	0,100				Metallrahmen ALU
,00 x 2,00	0,110	0,110	0,110	0,110	37					2	1	0,040	Kst Fenster
,80 x 2,40	0,100	0,100	0,100	0,100	24			1	0,100				Metallrahmen ALU
,00 x 1,00	0,110	0,110	0,110	0,110	42						1	0,040	Kst Fenster
,00 x 0,40	0,110	0,110	0,110	0,110	67						1	0,040	Kst Fenster
,00 × 0,60	0,110	0,110	0,110	0,110	55						1	0,070	Kst Fenster
,90 x 0,90	0,110	0,110	0,110	0,110	46						1	0,040	Kst Fenster
ур 1 (Т1)	0,110	0,110	0,110	0,110	30								Kst Fenster
yp 2 (T2)	0,100	0,100	0,100	0,100	28								Metallrahmen ALU
yp 3 (T3)	0,120	0,120	0,120	0,120	33				1				Metalirahmen ALU

Rb.li,re,ob,u Rahmenbreite links,rechts,oben, unten [m] Anteil [%] Rahmenanteil des gesamten Fensters Stb. Stulpbreite [m] H-Spr. Anz Anzahl der horizontalen Sprossen Spb. Sprossenbreit Pfb. Pfostenbreite [m] V-Spr. Anz Anzahl der vertikalen Sprossen Typ Prüfnormmaßtyp

Spb. Sprossenbreite [m]

Monatsbilanz Standort HWB GASSLHOF

Standort: Steinakirchen am Forst

BGF $[m^2] = 1.495,50$

 $L_T[W/K] = 2.115,95$

Innentemp.[°C] = 20

BRI $[m^3] = 6.563,38$

 $L_V[W/K] = 1.173,95$

 $qih [W/m^2] = 7,50$

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Jänner	31	-1,60	34.001	18.864	52.865	8.397	1.253	9.650	0,18	1,00	43.218
Februar	28	0,31	28.005	15.537	43.542	7.584	1.953	9.538	0,22	1,00	34.010
März	31	4,19	24.893	13.811	38.704	8.397	2.896	11.293	0,29	1,00	27.434
April	30	8,66	17.272	9.583	26.855	8.126	3.551	11.677	0,43	0,99	15.306
Mai	31	13,24	10.643	5.905	16.547	8.397	4.491	12.888	0,78	0,91	4.738
Juni	30	16,31	5.620	3.118	8.738	8.126	4.283	12.409	1,42	0,66	0
Juli	31	18,08	3.023	1.677	4.701	8.397	4.551	12.948	2,75	0,36	0
August	31	17,57	3.823	2.121	5.943	8.397	4.198	12.595	2,12	0,46	0
September	30	14,30	8.683	4.817	13.500	8.126	3.357	11.483	0,85	0,89	2.281
Oktober	31	9,16	17.070	9.471	26.541	8.397	2.449	10.846	0,41	0,99	15.788
November	30	3,69	24.841	13.782	38.624	8.126	1.347	9.473	0,25	1,00	29.160
Dezember	31	-0,17	31.756	17.619	49.375	8.397	1.051	9.448	0,19	1,00	39.931
Gesamt	365			116.305 bare Gew	325.934	98.867 84.361	35.379 27.909	134.246 112.270			211.865

HWB _{BGF} = 141,67 kWh/m²a HWB _{BRI} = 32,28 kWh/m³a

Ende Heizperiode: 31.05. Beginn Heizperiode: 10.09.

Monatsbilanz Referenzklima HWB GASSLHOF

Standort: Referenzklima

BGF $[m^2]$ = 1.495,50

 $L_T[W/K] = 2.115,95$

Innentemp.[°C] = 20

BRI $[m^3] = 6.563,38$

 $L_V[W/K] = 1.173,95$

 $qih [W/m^2] = 7,50$

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh	Vollage		kWh
Jänner	31	-1,53	33.894	18.805	52.699	8.397	1.323	9.720	0,18	1,00	42.982
Februar	28	0,73	27.400	15.202	42.602	7.584	2.094	9.678	0,23	1,00	32.931
März	31	4,81	23.913	13.267	37.180	8.397	3.027	11.424	0,31	1,00	25.786
April	30	9,62	15.814	8.774	24.587	8.126	3.682	11.808	0,48	0,98	12.972
Mai	31	14,20	9.131	5.066	14.197	8.397	4.636	13.033	0,92	0,86	2.999
Juni	30	17,33	4.068	2.257	6.325	8.126	4.557	12.683	2,01	0,49	119
Juli	31	19,12	1.385	769	2.154	8.397	4.774	13.171	6,11	0,16	0
August	31	18,56	2.267	1.258	3.525	8.397	4.316	12.713	3,61	0,28	6
September	30	15,03	7.572	4.201	11.773	8.126	3.425	11.551	0,98	0,83	2.144
Oktober	31	9,64	16.309	9.049	25.358	8.397	2.511	10.908	0,43	0,99	14.565
November	30	4,16	24.132	13.389	37.521	8.126	1.374	9.500	0,25	1,00	28.031
Dezember	31	0,19	31.186	17.302	48.489	8.397	1.070	9.467	0,20	1,00	39.025
Gesamt	365		197.071	109.337	306.409	98.867	36.789	135.657			201.561
			nuta	bare Gew	/inne:	78.823	26.025	104.848			

HWB _{BGF} = 134,78 kWh/m²a HWB _{BRI} = 30,71 kWh/m³a

Kühlbedarf Standort GASSLHOF

Standort: Steinakirchen am Forst

BGF $[m^2] = 1.495,50$

 $L_T[W/K] = 2.115,95$

Innentemp.[°C] = 26

BRI $[m^3] = 6.563,38$

 $qic [W/m^2] = 15,00$

fcorr = 1,40

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Kühl- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Jänner	31	-1,60	40.283	24.105	64.387	16.794	1.670	18.464	0,29	1,00	0
Februar	28	0,31	33.875	20.271	54.146	15.169	2.605	17.773	0,33	1,00	0
März	31	4,19	31.838	19.052	50.890	16.794	3.862	20.655	0,41	0,99	0
April	30	8,66	24.489	14.654	39.144	16.252	4.735	20.987	0,54	0,98	0
Mai	31	13,24	18.625	11.145	29.770	16.794	5.988	22.782	0,77	0,92	37
Juni	30	16,31	13.686	8.189	21.875	16.252	5.711	21.963	1,00	0,82	5.407
Juli	31	18,08	11.561	6.918	18.479	16.794	6.069	22.862	1,24	0,73	8.701
August	31	17,57	12.302	7.361	19.663	16.794	5.597	22.391	1,14	0,77	7.265
September	30	14,30	16.526	9.889	26.414	16.252	4.476	20.728	0,78	0,91	832
Oktober	31	9,16	24.585	14.711	39.296	16.794	3.265	20.059	0,51	0,98	0
November	30	3,69	31.508	18.854	50.361	16.252	1.795	18.048	0,36	1,00	0
Dezember	31	-0,17	38.202	22.859	61.061	16.794	1.401	18.195	0,30	1,00	0
Gesamt	365		297.479	178.008	475.487	197.735	47.172	244.907	40		22.242

 $KB = 14,87 \text{ kWh/m}^2\text{a}$

KB = 14.872 Wh/m²a

Außen induzierter Kühlbedarf GASSLHOF

Standort: Referenzklima

BGF $[m^2] = 1.495,50$

 $L_T[W/K] = 2.115,95$

Innentemp.[°C] = 26

BRI [m³] = 6.563,38

 $qic [W/m^2] = 15,00$

fcorr = 1,40

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	- Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Kühl- bedarf	
		°C	kWh	kWh	kWh	kWh	kWh	kWh	Vollage		kWh	
Jänner	31	-1,53	40.183	3.249	43.433	0	1.764	1.764	0,04	1,00	0	
Februar	. 28	0,73	33.315	2.694	36.009	0	2.792	2.792	0,08	1,00	0	
März	31	4,81	30.929	2.501	33.430	0	4.035	4.035	0,12	1,00	0	
April	30	9,62	23.137	1.871	25.008	0	4.909	4.909	0,20	1,00	0	
Mai	31	14,20	17.224	1.393	18.616	0	6.182	6.182	0,33	1,00	0	
Juni	30	17,33	12.247	990	13.237	0	6.077	6.077	0,46	1,00	0	
Juli	31	19,12	10.042	812	10.854	0	6.366	6.366	0,59	0,99	0	
August	31	18,56	10.860	878	11.738	0	5.755	5.755	0,49	0.99	0	
September	30	15,03	15.496	1.253	16.749	0	4.567	4.567	0,27	1,00	0	
Oktober	31	9,64	23.879	1.931	25.810	0	3.348	3.348	0,13	1,00	0	
November	30	4,16	30.850	2.495	33.344	0	1.832	1.832	0,05	1,00	0	
Dezember	31	0,19	37.673	3.046	40.719	0	1.427	1.427	0,04	1,00	0	
Gesamt	365		285.835	23.114	308.949	0	49.052	49.052			0	•66

 $KB^* = 0,00 \text{ kWh/m}^3 \text{a}$

 $KB* = 0,00 \text{ Wh/m}^3 \text{a}$

RH-Eingabe **GASSLHOF**

Raumheizung

Allgemeine Daten

Art der Raumheizung

gebäudezentral

Abgabe

Haupt Wärmeabgabe

Radiatoren, Einzelraumheizer

Systemtemperatur

70°/55°

Regelfähigkeit

Raumthermostat-Zonenregelung mit Zeitsteuerung

Heizkostenabrechnung

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>		2	20	Leitungsläng	en It. Defaultwerten	
g	edämmt	Verhältnis Dämmstoffdicke zu	Dämmu Armatur	0 0	konditioniert [%]	
Verteilleitungen	Ja	Rohrdurchmesser 2/3	Nein	64,93	75	
Steigleitungen	Ja	2/3	Nein	119,64	100	
Anbindeleitungen	Ja	1/3	Nein	837,48		

Speicher

kein Wärmespeicher vorhanden

Bereitstellung

Standort nicht konditionierter Bereich

Bereitstellungssystem Flüssiger oder gasförmiger Brennstoff Heizgerät Standardkessel

Energieträger

Heizöl Extra leicht

Modulierung

mit Modulierungsfähigkeit

Heizkreis

gleitender Betrieb

Baujahr Kessel

1978-1994

Korrekturwert des Wärmebereitstellungssystems

Nennwärmeleistung

126,39 kW Defaultwert

> 1,00% Fixwert k_r

Kessel bei Volllast 100%

Kesselwirkungsgrad entsprechend Prüfbericht

 $\eta_{100\%}$

86,2% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen

85,2%

η_{be,100%}

Kessel bei Teillast 30%

Kesselwirkungsgrad entsprechend Prüfbericht

 $\eta_{30\%}$

83,3% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen

82,3% 1) be,30%

Betriebsbereitschaftsverlust bei Prüfung

q bb,Pb

1,0% Defaultwert

Hilfsenergie - elektrische Leistung

Umwälzpumpe

134,93 W Defaultwert

Ölpumpe

2.527,86 W Defaultwert

WWB-Eingabe GASSLHOF

Warmwasserbereitung

Allgemeine Daten

Art der Warmwasserb.

gebäudezentral

Warmwasserbereitung

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteilu</u>	ung mit 2	<u>Zirkulation</u>		Leitungsläng	en It. Default	werten	
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]		Leitungslänge [m]	konditioniert [%]	
Verteilleitungen	Ja	2/3	[]	Nein	22,55	75	
Steigleitungen	Ja	1/3		Nein	59,82	100	
Stichleitungen	Nein		20,0		71,78	Material St	ahl 2,42 W/m
Zirkulationsleitur	ıg Rückla	uflänge			ŀ	conditioniert [%]
Verteilleitung	Ja	2/3		Nein	21,55	75	
Steigleitung	Ja	1/3		Nein	59,82	100	ar:

Speicher

Art des Speichers

indirekt beheizter Speicher

Standort

nicht konditionierter Bereich

Baujahr

1986-1993

Täglicher Bereitschaftsverlust Wärmespeicher

Nennvolumen

2.094 I

Defaultwert

 $q_{b,WS} = 4,87 \text{ kWh/d}$

Defaultwert

Hilfsenergie - elektrische Leistung

Zirkulationspumpe

40,16 W Defaultwert

Speicherladepumpe

134,93 W Defaultwert

Lüftung für Gebäude GASSLHOF

Lüftung für Gebäude

energetisch wirksamer Luftwechsel

1,000 1/h

Falschluftrate

0,11 1/h

Luftwechselrate Blower Door Test

2,50 1/h

Wärmebereitstellungsgrad Lüftung

keine Wärmerückgewinnung

Erdvorwärmung

kein Erdwärmetauscher

energetisch wirksamer Luftwechsel

Gesamtes Gebäude Vv

3.110,63 m³

Wärmebereitstellungsgrad Gesamt

0 %

Art der Lüftung

Lufterneuerung

Lüftungsanlage

nur Heizfunktion

	Standort		R-Wert	Abschläge	
Lüftungsgerät	konditioniert			0 %	
Außen- / Fortluftleitungen	konditioniert		< 2,5 m ² K/W	0 %	
Ab- / Zuluftleitungen	konditioniert		< 2,5 m²K/W	0 %	
tägl. Betriebszeit der Anlage	14	h			
Grenztemperatur Heizfall	35	°C			
Nennwärmeleistung	126	kW			

Nennwärmeleistung	126	kW		
Zuluftventilator spez. Leistung	1,25	Wh/m³		
Abluftventilator spez. Leistung	0,83	Wh/m³		
NERLT-h	143.452	kWh/a		
NERLT-k	0	kWh/a	(keine Kühlfunktion vorhanden)	
NERLT-d	0	kWh/a	(keine Befeuchtung vorhanden)	
NE	66.231	kWh/a		

Lüftung für Gebäude **GASSLHOF**

Legende

NERLT-h NERLT-k NERLT-d NE

spezifischer j\u00e4hrlicher Nutzenergiebedarf f\u00fcr das Heizen des Luftvolumenstroms
 spezifischer j\u00e4hrlicher Nutzenergiebedarf f\u00fcr das K\u00fchlen des Luftvolumenstroms
 spezifischer j\u00e4hrlicher Nutzenergiebedarf f\u00fcr das Dampf\u00fbefeuchten des Luftvolumenstroms
 j\u00e4hrlicher Nutzenergiebedarf f\u00fcr Luftf\u00f6rderung

Energiekennzahlen für die Anzeige in Druckwerken und elektronischen Medien

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung

GASSLHOF

Gebäudeteil

Nutzungsprofil

Gaststätte

Straße

Unterer Markt 6

3261 Steinakirchen am Forst

Baujahr

1900

Katastralgemeinde

Steinakirchen am Forst

KG-Nr.

22138

Grundstücksnr.

PLZ/Ort

Seehöhe

317 m

Energiekennzahlen It. Energieausweis

HWB 142 f_{GEE} 1,53

Energieausweis Ausstellungsdatum 04.12.2014

Gültigkeitsdatum 03.12.2024

- Der Energieausweis besteht aus einer ersten Seite mit einer Effizienzskala,
 - einer zweiten Seite mit detaillierten Ergebnisdaten,
 - Empfehlung von Maßnahmen ausgenommen bei Neubau -, deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist,
 - einem Anhang, der den Vorgaben der Regeln der Technik entsprechen muss.
- Der Heizwärmebedarf beschreibt jene Wärmemenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden HWB muss. Einheit: kWh/m² Jahr
- Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf f_{GEE} (Anforderung 2007).
- Wird ein Gebäude oder ein Nutzungsobjekt in einem Druckwerk oder einem elektronischen Medium zum Kauf oder zur EAVG §3 In-Bestand-Nahme angeboten, so sind in der Anzeige der Heizwärmebedarf und der Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben. Diese Pflicht gilt sowohl für den Verkäufer oder Bestandgeber als auch für den von diesem beauftragten Immobilienmakler.
- (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der EAVG §4 Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.
- Wird dem Käufer oder Bestandnehmer vor Abgabe seiner Vertragserklärung ein Energieausweis vorgelegt, so gilt die darin EAVG §6 angegebene Gesamtenergieeffizienz des Gebäudes als bedungene Eigenschaft im Sinn des § 922 Abs. 1 ABGB.
- (1) Wird dem Käufer oder Bestandnehmer entgegen § 4 nicht bis spätestens zur Abgabe seiner Vertragserklärung ein EAVG §7 Energieausweis vorgelegt, so gilt zumindest eine dem Alter und der Art des Gebäudes entsprechende Gesamtenergieeffizienz als vereinbart. (2) Wird dem Käufer oder Bestandnehmer entgegen § 4 nach Vertragsabschluss kein Energieausweis ausgehändigt, so kann er entweder sein Recht auf Ausweisaushändigung gerichtlich geltend machen oder selbst einen Energieausweis einholen und die ihm daraus entstandenen Kosten vom Verkäufer oder Bestandgeber ersetzt begehren.
- Vereinbarungen, die die Vorlage- und Aushändigungspflicht nach § 4, die Rechtsfolge der Ausweisvorlage nach § 6, die EAVG §8 Rechtsfolge unterlassener Vorlage nach § 7 Abs. 1 einschließlich des sich daraus ergebenden Gewährleistungsanspruchs oder die Rechtsfolge unterlassener Aushändigung nach § 7 Abs. 2 ausschließen oder einschränken, sind unwirksam.
- (1) Ein Verkäufer, Bestandgeber oder Immobilienmakler, der es entgegen § 3 unterlässt, in der Verkaufs- oder EAVG §9 In-Bestand-Gabe-Anzeige den Heizwärmebedarf und den Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstraßbestimmungen mit strengerer Straße bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1 450 Euro zu bestrafen. Der Verstoß eines Immobilienmaklers gegen § 3 ist entschuldigt, wenn er seinen Auftraggeber über die Informationspflicht nach dieser Bestimmung aufgeklärt und ihn zur Bekanntgabe der beiden Werte beziehungsweise zur Einholung eines Energieausweises aufgefordert hat, der Auftraggeber dieser Aufforderung jedoch nicht nachgekommen ist.
 - (2) Ein Verkäufer oder Bestandgeber, der es entgegen § 4 unterlässt,
 - 1. dem Käufer oder Bestandnehmer rechtzeitig einen höchstens zehn Jahre alten Energieausweis vorzulegen oder
 - dem Käufer oder Bestandnehmer nach Vertragsabschluss einen Energieausweis oder eine vollständige Kopie desselben auszuhändigen, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1450 Euro zu bestrafen.

Vorlagebestätigung

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Bezeichnung

GASSLHOF

Gebäudeteil

Nutzungsprofil

Straße

Gaststätte

Unterer Markt 6

PLZ/Ort Grundstücksnr. .52

3261 Steinakirchen am Forst

Baujahr

1900

Katastralgemeinde

Steinakirchen am Forst

KG-Nr.

22138

Seehöhe

317 m

Energiekennzahlen It. Energieausweis

HWB 142 f_{GEE} 1,53

- Der Energieausweis besteht aus einer ersten Seite mit einer Effizienzskala,
 - einer zweiten Seite mit detaillierten Ergebnisdaten,
 - Empfehlung von Maßnahmen ausgenommen bei Neubau -, deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist,
 - einem Anhang, der den Vorgaben der Regeln der Technik entsprechen muss.

Der Vorlegende bestätigt, dass der Energieaus	weis vorgelegt wurde.	
Ort, Datum		
Name Vorlegender	Unterschrift Vorlegender	- Transfer and the same of
Der Interessent bestätigt, dass ihm der Energie	eausweis vorgelegt wurde.	
Ort, Datum		
Name Interessent	Unterschrift Interessent	

HWB

Der Heizwärmebedarf beschreibt jene Wärmemenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden muss. Einheit: kWh/m2 Jahr

f_{GEE}

Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

EAVG §4

(1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der

Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Aushändigungsbestätigung

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Bezeichnung

GASSLHOF

Gebäudeteil

Nutzungsprofil

Gaststätte

Unterer Markt 6

Baujahr

1900

Straße

Katastralgemeinde

Steinakirchen am Forst

PLZ/Ort

3261 Steinakirchen am Forst

KG-Nr.

22138

Grundstücksnr.

Seehöhe

317 m

Energiekennzahlen It. Energieausweis

HWB 142 f_{GEE} 1,53

- Der Energieausweis besteht aus einer ersten Seite mit einer Effizienzskala,
 - einer zweiten Seite mit detaillierten Ergebnisdaten,
 - Empfehlung von Maßnahmen ausgenommen bei Neubau -, deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist,
 - einem Anhang, der den Vorgaben der Regeln der Technik entsprechen muss.

els ausgehändigt wurde.
Unterschrift Verkäufer/Bestandgeber
sweis ausgehändigt wurde.
Unterschrift Käufer/Bestandnehmer

EAVG §4

muss. Einheit: kWh/m² Jahr

HWB

f_{GEE}

(Anforderung 2007). (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Der Heizwärmebedarf beschreibt jene Wärmemenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden

Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf

.